博碩士論文 108226010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.15.151.94
姓名 楊賀宇(Ho-Yu Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 原子層沉積法沉積二氧化鉿於波導模態共振結構之研究
(The study on deposition of HfO2 on Guided-mode Resonance structure by Atomic Layer Deposition)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來半導體產業的快速發展對線寬的要求越來越小,原子層沉積法因具有極佳的均勻性和保形性,應用領域也越來越廣泛。
本論文利用稜鏡浸潤式干涉微影系統製作出週期為0.405 μm光柵波導結構,並成功利用電將輔助原子層沉積法在製程溫度60 ℃下,沉積0.03 μm HfO2薄膜於光阻光柵結構上。
利用Rsoft DiffracMOD分析二氧化鉿(HfO2)薄膜於波導模態共振結構之光譜變化。在加入HfO2薄膜後,光柵層的等效折射率增加,使共振點的轉移至光柵層中,TE模態共振點的消光比從原本的3727增加到36943。
並藉由TE及TM共振點位移量的不同,模擬出多模態非偏振濾波效果,同一階模態共振點的TE及TM波長差僅小於0.5 nm ,穿透率皆小於1%,在線寬表現上FWHM皆低於0.02 μm。
摘要(英) In recent years, the rapid development of the semiconductor industry require as small as for line width. Because of its excellent uniformity and shape retention, Atomic Layer Deposition technology has developed rapidly and has more and more applications.
In this thesis, a grating waveguide structure with a period of 0.405 μm was fabricated using the immersion interference lithography system, and a 0.03 μm HfO2 film was deposited on the photoresist grating structure by using the Plasma Enhanced Atomic Layer Deposition method at a process temperature of 60 ℃.
Use Rsoft DiffracMOD to analyze the spectral changes of the hafnium dioxide (HfO2) film in the waveguide mode resonance structure. After adding the HfO2 film, the equivalent refractive index of the grating layer increases, so that the resonance point is transferred to the grating layer, and the extinction ratio of the TE mode resonance point is increased from 3727 to 36943.
And by the difference of TE and TM resonance point displacements, the multi-modal non-polarization filtering effect is simulated. The TE and TM wavelength difference of the same order modal resonance point is only less than 0.5 nm, the transmittance is less than 1%, and the line width In terms of performance, the FWHM is lower than 0.02 μm.
關鍵字(中) ★ 原子層沉積
★ 波導
★ 波導模態共振
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
第一章 緒論 1
1-1前言 1
1-2波導模態共振簡介 2
1-3文獻回顧 6
1-4研究目的與動機 11
第二章 基礎理論 13
2-1 波導理論 13
2-1-1波導方程式 14
2-1-2等效介質理論 20
2-1-3嚴格耦合波理論 23
2-1-4波導模態共振的性質 30
第三章 製程與儀器設備 32
3-1 干涉微影 32
3-1-1 Lloyd’s mirror干涉 33
3-1-2稜鏡浸潤式干涉微影 35
3-2 干涉微影製程 38
3-2-1 干涉系統架設 38
3-2-2干涉微影 41
3-3 原子層沉積法 43
3-3-1原子層沉積技術工作原理 43
3-3-2原子層沉積系統 46
3-4量測儀器 49
第四章 結果與討論 50
4-1 製程結果 50
4-1-1光柵製程結果 50
4-1-2鍍膜結果 54
4-2 光譜模擬結果 57
4-2-1 波導層厚度對共振位置的影響 58
4-2-2不同波導層厚度之穿透光譜圖 59
4-2-3光柵填充率對共振位置的影響 61
4-2-4 HfO2厚度對共振位置的影響 63
4-2-5不同HfO2厚度下改變波導層厚度對共振位置的影響 65
4-2-6多模態非偏振濾波之穿透光譜圖 70
第五章 結論 73
參考文獻 74
參考文獻 [1] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902).
[2] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
[3] M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 3, 27–31 (2007).
[4] R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999).
[5] J. H. Lin, Y. C. Huang, N. D. Lai, H. C. Kan, and C. C. Hsu, “Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer,” Opt. Express 20(1), 377–384 (2012).
[6] J. H. Lin, J. H. Huang, H. C. Kan, and C. C. Hsu, “Optical tuning of guided mode resonance in an azo-copolymer waveguide grating structure inscribed with a surface relief grating,” Adv. Device Mater. 1(3), 74–79 (2015).
[7] Y. Nazirizadeh, F. Oertzen, T. Karrock, J. Greve, and M. Gerken, “Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition,” Opt. Express 21(16), 18661–18670 (2013).
[8] S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
[9] D. Rosenblatt, A. Sharon. and A. A. Friesem, “Resonant grating waveguide structures,” in IEEE Journal of Quant. Electronics, vol. 33, no. 11, pp. 2038–2059, (1997).
[10] S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
[11] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
[12] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[13] D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett. 35(19), 3201–3203 (2010).
[14] T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36, 2411–2413 (2011).
[15] Y. Y. Li, C. Hu, Y. C. Wu, J. J. Chen, and H. H. Feng, “Numerical investigation of one-dimensional nonpolarizing guided-mode resonance gratings with conformal dielectric films,” Opt. Express 21, 345-357 (2013).
[16] M. R. Saleem, R. Ali, S. Honkanen and J. Turunen, “Effect of waveguide thickness layer on spectral resonance of a Guided Mode Resonance Filter,” International Bhurban Conference on Applied Sciences & Technology (IEEE, 2014), pp. 39-43.
[17] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[18] L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[19] R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000).
[20] K. Knop, “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,” J. Opt. Soc. Am. 68 120 (1978).
[21] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811 (1981).
[22] S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[23] S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 8, 1470–1475 (1990).
[24] T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” J. Opt. Soc. Am. A 26(3), 559–565 (2009).
[25] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[26] I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga and V. Smyntyna, “Structural and XPS characterization of ALD Al2O3 coated porous silicon,” Vacuum 113, 52–58 (2015).
[27] H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical
[28] Y. J. Choia, S. C. Gonga, D. C. Johnson, S. Golledge, G. Y. Yeomc, H. H. Parka, Applied Surface Science, 269, 92– 97, (2013).
[29] M. Crne, V. Sharma, J. Blair, J. O. Park, C. J. Summers, and M. Srinivasarao, “Biomimicry of optical microstructures of Papilio palinurus,” Europhys. Lett. 93, 14001 (2011).
[30] I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20, 055024 (2010).
[31] 吳昱德,“菱鏡浸潤式干涉微影技術製作次波長結構及其應用”,國立中央大學光電科學研究所碩士論文,(2012)
[32] X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2021-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明