博碩士論文 108328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.135.217.182
姓名 李順吉(Shun-Ji Li)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 開發膜電極組與設計流場對高溫型質子交換膜燃料電池之性能影響
(Development of membrane electrode assembly and influence of flow field design on the performance of high temperature proton exchange membrane fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本研究為膜電極組開發與均勻流場設計,並針對膜電極組特性分析與模擬流場提升性能,藉由導電率、孔隙率、滲透率量測,建立高溫質子交換膜與氣體擴散層之特性關係,並將研究之膜電極組應用於高溫質子交換膜燃料電池、探討不同氣體擴散層、高溫質子交換膜、流場設計,進行性能曲線量測、化學計量比量測、壓降量測、背壓法及交流阻抗分析,等參數對電池性能之影響。
研究結果顯示,在氣體擴散層與高溫薄膜特性分析中,能使用流速與雷諾數之關係建立不同氣體擴散層之氣體擴散性、溫度與導電度之關係建立不同高溫薄膜之導電性。在高溫型燃料電池研究中,使用W1S1010高滲透率、低壓降之氣體擴散層與DPS高導電度薄膜,能有效提升電池性能。最終,單電池於操作電壓0.6 V下,有效提升性能14 %;另外將反應面積放大至75cm2,並使用模擬軟體驗證流場均勻性,可得知使用單區流場在操作電壓0.6 V下,能有效提升性能11.9%。操作參數之結果顯示,增加溫度、背壓、空氣化學計量比皆能提升電池性能。
摘要(英) High-temperature proton exchange membrane fuel cell (HT-PEMFC) is required to attain the current power generation demands with green and clean hydrogen. In this research, we focus on the development of membrane electrode assembly (MEA) and uniform flow field for HT-PEMFC. The intensive investigations were performed in the design of MEA by measuring the conductivity of the membrane at various temperatures (100 oC to 190 oC), porosity, and permeability measurement for various porous carbon-fiber gas diffusion layer (GDL) such as carbon paper and carbon cloth, simulations for flow-field analysis with various porous media were performed. The performance of the HT-PEMFC between 160 oC to 190 oC is analyzed with MEA assembled with various GDL to analyze the relationship between the characteristics of the HT-PEMFC and gas diffusion layer porosity and permeability. Also, the influence of the flow field on the performance of HT-PEMFC is analyzed. Along with the physical parameters of various parts in the assembly of HT-PEMFC, the performance of the HT-PEMFC with various air stoichiometric ratios from 1-4 with constant hydrogen stoichiometric ratio of 1.2 is also analyzed. Further investigations on the influence of pressure drop, back pressure method, and AC impedance analysis on the functioning of HT-PEMFC are also performed.
The HT-PEMFC performance investigation results show that: (i) the relationship between the velocity and Reynolds number can be used to understand the gas diffusivity of various GDL in the fuel cell (FC) operation; (ii) the relationship between the temperature and conductivity of the membrane is proportional; (iii) the presence of high permeable GDL, low-pressure drop, and highly conductive membrane can effectively improve the performance of the HT-PEMFC; and (iv) the performance of the single cell (area ≈25 cm2) can be improved up to 14% at 0.6 V FC operating voltage. Further, the flow field simulation results show that the use of an unpartitioned flow channel (metal foam) in a large area assembly of HT-PEMFC can effectively improve the performance by 11.9% (at 0.6 V) with the uniform gas distribution. The proper assembly of HT-PEMFC with maintaining key parameters in operation (such as temperature, back pressure, and air stoichiometry) can help in achieving higher performance and power generation.
關鍵字(中) ★ 高溫型質子交換膜燃料電池
★ 膜電極組
★ 流場設計
關鍵字(英) ★ High-temperature proton exchange membrane fuel cell
★ membrane electrode assembly
★ flow field design
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiv
第一章 緒論 1
1-1  前言 1
1-2  質子交換膜燃料電池 4
1-2-1 燃料電池種類 4
1-2-2 質子交換膜燃料電池工作原理 7
1-2-3 質子交換膜燃料電池之組成結構 9
1-2-4 質子交換膜燃料電池之極化現象 15
1-3  電化學交流阻抗基本原理 18
1-4  研究動機與方向 20
第二章 文獻回顧 22
2-1  高溫型質子交換膜燃料電池 22
2-2  金屬多孔材特性之研究與應用 25
2-3  電化學交流阻抗分析 27
第三章 實驗方法與設備 31
3-1  實驗架構與流程 31
3-2  微結構分析 32
3-3  滲透率量測 34
3-4  質子導電度量測 36
3-5  壓降量測 37
3-6  燃料電池各部元件 38
3-6-1 膜電極組 38
3-6-2 鐵氟龍氣密墊片 39
3-6-3 鎳金屬多孔材 40
3-6-4 金屬雙極板與流道 41
3-6-5 端版 41
3-7  燃料電池測試系統 41
3-8  電化學交流阻抗分析儀 45
第四章 結果與討論 50
4-1  氣體擴散層之表面形貌 50
4-2  不同氣體擴散層與孔隙率之關係 51
4-3  不同氣體擴散層之滲透率分析 51
4-4  流速與雷諾數之關係 53
4-5  高溫質子交換膜之導電度分析 54
4-6  不同分區流場速度與壓降之影響 55
4-7  單電池性能測試與交流阻抗分析 58
4-7-1 不同氣體擴散層之電池性能影響 58
4-7-2 不同高溫薄膜之電池性能影響 66
4-7-3 不同分區流場之電池性能影響 73
4-9  不同操作壓力對電池性能之影響 78
4-10  不同空氣化學計量比測試 83
4-11  開發高溫型質子交換膜3cell之電堆 88
第五章 結論與未來規劃 91
5-1  結論 91
5-2  未來規劃 94
參考文獻 95
參考文獻 [1]http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf.
[2]https://www.gg-fc.com/art-39280.html.
[3]R. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 93, pp. 25-31, 2001.
[4]M.H. Oh, et al., “The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system,” Electrochim. Acta, Vol. 50, pp. 777-780, 2004.
[5]F. Zhang, et al., “Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction,” Applied Catalysis B, Vol. 268, pp. 118380, 2020.
[6]S.S. Hsieh, et al., “Effect of pressure drop in different flow fields on water accumulation and current distribution for a micro PEM fuel cell,” Energy Conv. Manag., Vol. 52, pp. 975-982, 2011.
[7]S.S. Hsieh, et al., “Pressure drop on water accumulation distribution for a micro PEM fuel cell with different flow field plates,” Int. J. Heat Mass Transf., Vol. 52, pp. 5657-5659, 2009.
[8]Su, F.B. Weng, et al., “Studies on flooding in PEM fuel cell cathode channels,” Int. J. Hydrogen Energy, Vol. 31, pp. 1031-1039, 2006.
[9]G Shen, et al., “Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells,” Nature Communications, Vol. 11, pp. 1191, 2020.
[10]K.S. Lyons, B.D. Gould, “Lightweight Titanium Metal Bipolar Plates for PEM Fuel Cells,” Materials Science Forum, Vol. 879, pp. 613-618, 2016.
[11]Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[12]K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[13]https://en.wikipedia.org/wiki/Nafion.
[14]Y. L. Ma, et al., “Conductivity of PBI membranes for high temperature polymer electrolyte fuel cells”, J. Electrochem. Soc., Vol. 151 , pp. A8-A16, 2004.
[15]J. Wind, et al., “Metallic bipolar plates for PEM fuel cells,” J. Power Sources, Vol. 105, pp. 256-260, 2002.
[16]X. Cheng, et al., “A review of PEM hydrogen fuel cell contaminiation: impacts, mechanisms and mitigation”, J. Power Sources, Vol. 16, pp. 739756, 2007.
[17]M.V. Williams, et al., “Characterization of Gas Diffusion Layers for PEMFC,” J. Electrochem. Soc, Vol. 151, A1173-A1180, 2004.
[18]黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[19]A. Kumar, R.G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,” J. Power Sources, Vol. 129, pp. 62-67, 2004.
[20]S. Arisetty, et al., “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” J. Power Sources, Vol. 165, pp. 49-57, 2007.
[21]蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆氫能與燃料電池學術研討會, FC043,國立台南大學,2008。
[22]C.J. Tseng, et al., “Application of metal foams to high temperature PEM fuel cells,” Int. J. Hydrogen Energy, Vol. 41, pp. 16196-16204, 2016.
[23]M. Kim, et al., “Application of Metal Foam as a Flow Field for PEM Fuel Cell Stack,” Fuel Cells, Vol. 18, pp. 123-128, 2018.
[24]Y. L. Ma, et al., “Conductivity of PBI membranes for high temperature polymer electrolyte fuel cells,” J. Electrochem, Vol. 151, pp. 8-16, 2004.
[25]Z. Qi, S. Buelte, “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells,” J. Power Sources, Vol. 161, pp. 1126-1132, 2006.
[26]J. Zhang, et al., “Polybenzimidazole-membrane based PEM fuel cell in the temperature range of 120-200 oC,” J. Power Sources, Vol. 172, pp. 163-171, 2007.
[27]M. Boaventura, A. Mendes, “Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes,” Int. J. Hydrogen
Energy, Vol. 35, pp. 11649-11660, 2010.
[28]S. Galbiati, et al., “Experimental study of water transport in a polybenzimidazole based high temperature PEMFC,” Int. J. Hydrogen Energy, Vol. 37, pp. 2462-2469, 2012.
[29]S. Galbiati, et al., “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid,” Int. J. Hydrogen Energy, Vol. 37, pp. 14475-14481, 2012.
[30]C. Zhang, et al., “Investigation of water transport and its effect on performance of high temperature PEM fuel cells,” Electrochim. Acta, Vol. 149, pp. 271-277, 2014.
[31]M. G. Waller, et al., “Performance of high temperature PEM fuel cell materials. Part 1: effects of temperature, pressure and anode dilution,” Int. J. Hydrogen Energy, Vol. 41, pp. 2944-2954, 2016.
[32]G. Kang, et al., “Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells,”J. Membrane Science, Vol. 620, pp. 118981, 2021.
[33]J.J. Hwang, et al., “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” J. Heat Transfer, Vol. 124, pp. 120-129, 2002.
[34]M. Medraj, et al., “The effect of microstructure on the permeability of metallic foams,” J. Mater. Sci., Vol. 42, pp. 4372-4383, 2007.
[35]C.J. Tseng, et al., “A PEM fuel cell with metal foam as flow distributor,” Energy Convers. Manag, Vol. 62, pp. 14-21, 2012.
[36]B.T. Tsai, et al., “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[37]A. Fly, et al., “Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC,” Int. J. Hydrogen Energy, Vol. 37, pp. 422-435, 2012.
[38]M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 295, pp. 275-291, 2015.
[39]C. J. Tseng, et al., “Application of metal foams to high temperature PEM fuel cells,” Int. J. Hydrogen Energy, Vol. 41, pp. 16196-16204, 2016.
[40]V. A. Paganin, et al., “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell,” Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[41]M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” J. Electroanal. Chem. and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[42]N. H. Jalani, et al., “Performance analysis and impedance spectral signatures of high temperature PBI phosphoric acid gel membrane fuel cells,” J. Power Sources, Vol. 160, pp. 1096-1103, 2006.
[43]J. L. Jespersen, et al., “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell,” J. Power Sources, Vol. 191, pp. 289-296, 2009.
[44]C. Y. Chen, W. H. Lai, “Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell,” J. Power Sources, Vol. 195, pp. 7152-7159, 2010.
[45]M. S. Kondratenko, et al., “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy,” Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
[46]C. D. Beer, et al., “Electrical circuit analysis of CO poisoning in high- temperature PEM fuel cells for fault diagnostics and mitigation,” IEEE Trans. Ind. Appl., Vol. 51, pp. 619-630, 2015.
[47]R. Chen, et al., “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell,” SAE International by University of British Columbia, September 24, 2018.
[48]N. Dukhan, et al., “Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent,” Int. J. Heat Mass Transfer, Vol. 77, pp. 114-123, 2014.
[49]N. Dukhan, K. Patel, “Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlation,” J. Porous Mater, Vol. 18, pp. 655-665, 2011.
[50]L. Qingfeng, et al., “High temperature proton exchange membranes based on polybenzimidazoles for fuel cells,” P. Polymer Science, Vol. 34, pp. 449-477, 2009.
[51]H. Yang, T. S. Zhao, “Effect of anode flow filed design on the performance of liquid feed direct methanol fuel cells,” Electrochimical Acta, Vol. 50, pp. 3243-3252, 2005.
[52]H. Yang, et al., “Pressure drop behavior in the anode flow filed of liquid feed direct methanol fuel cells,” J. Power Sources, Vol. 142, pp.117-124, 2005.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明