博碩士論文 107328605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.147.47.97
姓名 麥昂個(Anggi Malwindasari)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱
(Analysis of Microgroove Depth of Gas Diffusion Layer (GDL) on Polymer Electrolyte Membrane (PEM) Fuel Cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 聚合物電解質膜(PEM)燃料電池是一種將反應物的化學能直接轉化為電能的電化學裝置。 PEM 燃料電池可以通過降低電池生產成本同時保持最大功率密度以減少 Pt 使用量來大規模生產和商業化。 通過將薄 Pt 直接沉積到氣體擴散層 (GDL) 表面來製造膜電極元件 (MEA) 是一種有效的方法,因為它可以產生薄的催化劑層和高功率密度。 當 Pt 薄膜直接沉積到 GDL 表面時,該 Pt 薄膜將產生良好的氣體傳輸,包括電子傳輸和質子傳輸。 如果 Pt 膜層太厚,則質子傳輸良好的區域將遠離氣體傳輸良好的區域。 這是由於氣體的擴散長度和質子在 Pt 薄膜中的擴散長度導致的電池只能達到有限的最大功率密度造成的。
在這個模擬中,我們使用了 COMSOL 和 3D DOMAIN。 COMSOL 使用有限元方法工作,允許使用者完成 PDE 系統。 我們類比了在 GDL 表面上製造具有深度變化(原始、20 µm 和 40 µm)的週期性凹槽,以增加沉積 Pt 薄膜的表面積。 我們還研究了對 PEM 燃料電池性能有顯著影響的關鍵設計參數。
結果表明,40 µm 凹槽深度具有最高的電流密度和陽極和陰極的傳質。 可以得出結論,凹槽越深,導致PEM燃料電池的性能越好。 我們通過分析影響 PEM 燃料電池性能的因素,研究了 PEM 燃料電池的關鍵設計參數。 這些因素是電流密度,品質傳輸包括陽極 H2 濃度、陽極 H2O 濃度、陰極 O2 濃度和陰極 H2O 濃度。 結果表明,膜電導率對所有因素都有顯著影響,GDL孔隙率僅對電流密度和陰極傳質有顯著影響,陽極入口流速對電流密度和陽極傳質有顯著影響,陰極入口流速有顯著影響。 GDL 電導率對電流密度和陰極傳質有顯著影響,但並非對所有因素都有顯著影響
摘要(英) Polymer Electrolyte Membrane (PEM) fuel cell is an electrochemical device that directly converts the chemical energy of the reactants into electricity. PEM fuel cells can be produced on a large scale and commercialized by reducing cell production costs while maintaining the maximum power density to reduce the amount of Pt used. Making Membrane Electrode Assemblies (MEA) directly depositing thin Pt into the gas diffusion layer (GDL) surface is an efficient way because it can produce a thin catalyst layer and a high-power density. When the thin Pt film is deposited directly onto the GDL surface, this thin Pt film will produce good gas transport including electron transport and proton transport. If the Pt film layer is too thick the areas with good proton transport will move away from the good gas transport areas. This is caused by cells that can only achieve a limited maximum power density due to the diffusion length of the gas and the diffusion length of the protons in the Pt film.
In this simulation, we used COMSOL with 3D DOMAIN. COMSOL works by using a finite element method that allows the user to complete the PDE system. We simulated the fabrication of periodic grooves with the depth variation (pristine, 20 µm, and 40 µm) on GDL surface to enhance the surface area for deposition Pt film. We also investigate the critical design parameters that have a significant effect on PEM fuel cell performance.
The results showed that 40 µm groove depth has the highest current density and mass transport both anode and cathode. It can be concluded that the deeper the groove, resulting in better performance of PEM fuel cell. We investigated the critical design parameters of PEM fuel cells by analyzing the factors that affect the performance of PEM fuel cells. The factors are current density and mass transport includes anode H2 concentration, anode H2O concentration, cathode O2 concentration, and cathode H2O concentration. The results showed that membrane conductivity has a significant effect on all factors, GDL porosity only has a significant effect on current density and cathode mass transport, Anode inlet flow velocity has a significant effect on current density and anode mass transport, Cathode inlet flows velocity has a significant effect on current density and cathode mass transport, GDL electric conductivity did not have a significant effect on all factors.
關鍵字(中) ★ 氣體擴散層 (GDL)
★ 催化劑
★ 凹槽深度
★ 聚合物電解質膜(PEM)燃料電池
★ COMSOL
關鍵字(英) ★ Gas Diffusion Layer (GDL)
★ Catalyst
★ Groove Depth
★ Polymer Electrolyte Membrane (PEM) Fuel Cell
★ COMSOL
論文目次 中文摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables viii
1 CHAPTER 1 1
1.1 Background 1
1.2 Literature Review 2
1.3 Objectives 4
2 CHAPTER 2 5
2.1 An Introduction to Fuel Cells 5
2.2 Proton Exchange Membrane Fuel Cell (PEMFC) 5
2.3 Membrane Electrode Assembly (MEA) 7
2.3.1 Proton Exchange Membrane (PEM) 7
2.3.2 Catalyst Layer 7
2.3.3 Gas Diffusion Layer (GDL) 8
2.3.4 Bipolar Plate 8
2.4 MEA Performance Factors 8
2.5 COMSOL Multiphysics 9
2.5.1 Current Distribution 10
2.5.2 Mass Transport of Concentrated Species 11
2.5.3 Fluid Flow 14
3 CHAPTER 3 15
3.1 System Design 15
3.1.1 Model Design 15
3.1.2 COMSOL Multiphysics Model 19
3.2 Assumptions and Boundary Condition 20
3.3 Data Collection Methodology 20
3.4 Model Validation 21
3.5 Grid Independence Verification 24
4 CHAPTER 4 25
4.1 Effect of Groove Depth Variation for PEM Fuel Cell Performance 25
4.2 Critical Design Parameters of PEM Fuel Cell 31
4.2.1 Effect of Membrane Conductivity 31
4.2.2 Effect of GDL Electric Conductivity 36
4.2.3 Effect of GDL Porosity 41
4.2.4 Effect of Anode Inlet Flow Velocity 45
4.2.5 Effect of Cathode Inlet Flow Velocity 50
5 CHAPTER 5 55
5.1 CONCLUSIONS 55
5.2 SUGGESTIONS 55
6 References 56
參考文獻 [1] D.Huang, H.Zhang, S.Weng, and M.Su, “applied sciences Modeling and Simulation of IGCC Considering Pressure and Flow Distribution of Gasifier,” 2016, doi: 10.3390/app6100292.
[2] Y.Wang, K. S.Chen, J.Mishler, S. C.Cho, and X. C.Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011, doi: 10.1016/j.apenergy.2010.09.030.
[3] T. H.Huang, H. L.Shen, T. C.Jao, F. B.Weng, and A.Su, “Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine,” Int. J. Hydrogen Energy, vol. 37, no. 18, pp. 13872–13879, 2012, doi: 10.1016/j.ijhydene.2012.04.108.
[4] A.Brouzgou, S. Q.Song, andP.Tsiakaras, “Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges, and prospects,” Appl. Catal. B Environ., vol. 127, pp. 371–388, 2012, doi: 10.1016/j.apcatb.2012.08.031.
[5] M.Cavarroc et al., “Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings,” Electrochem. commun., vol. 11, no. 4, pp. 859–861, 2009, doi: 10.1016/j.elecom.2009.02.012.
[6] M. S.Çögenli, S.Mukerjee, andA. B.Yurtcan, “Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition,” Fuel Cells, vol. 15, no. 2, pp. 288–297, 2015, doi: 10.1002/fuce.201400062.
[7] N.Cunningham, E.Irissou, M.Lefèvre, M. C.Denis, D.Guay, andJ. P.Dodelet, “PEMFC anode with very low Pt loadings using pulsed laser deposition,” Electrochem. Solid-State Lett., vol. 6, no. 7, 2003, doi: 10.1149/1.1574232.
[8] S.Cuynet, A.Caillard, T.Lecas, J.Bigarré, P.Buvat, andP.Brault, “Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering,” J. Phys. D. Appl. Phys., vol. 47, no. 27, 2014, doi: 10.1088/0022-3727/47/27/272001.
[9] T. W.Huang, H.Qayyum, G. R.Lin, S. Y.Chen, andC. J.Tseng, “Production of high-performance and improved-durability Pt-catalyst /support for proton-exchange-membrane fuel cells with pulsed laser deposition,” J. Phys. D. Appl. Phys., vol. 49, no. 25, p. 255601, 2016, doi: 10.1088/0022-3727/49/25/255601.
[10] W.Mróz, B.Budner, W.Tokarz, P.Piela, andM. L.Korwin-Pawlowski, “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells,” J. Power Sources, vol. 273, pp. 885–893, 2015, doi: 10.1016/j.jpowsour.2014.09.173.
[11] H.Qayyum, C. J.Tseng, T. W.Huang, andS. Y.Chen, “Pulsed laser deposition of platinum nanoparticles as a catalyst for high-performance PEM fuel cells,” Catalysts, vol. 6, no. 11, pp. 1–13, 2016, doi: 10.3390/catal6110180.
[12] M. A.Raso, I.Carrillo, E.Mora, E.Navarro, M. A.Garcia, andT. J.Leo, “Electrochemical study of platinum deposited by electron beam evaporation for application as fuel cell electrodes,” Int. J. Hydrogen Energy, vol. 39, no. 10, pp. 5301–5308, 2014, doi: 10.1016/j.ijhydene.2013.12.111.
[13] M. S.Saha, A. F.Gullá, R. J.Allen, andS.Mukerjee, “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition,” Electrochim. Acta, vol. 51, no. 22, pp. 4680–4692, 2006, doi: 10.1016/j.electacta.2006.01.006.
[14] J.Iglesia, C. C.Lang, Y. M.Chen, S. yuanChen, andC. J.Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer,” J. Power Sources, vol. 436, no. July, p. 226886, 2019, doi: 10.1016/j.jpowsour.2019.226886.
[15] H.Tsuchiya andO.Kobayashi, “Mass production cost of PEM fuel cell by learning curve,” Int. J. Hydrogen Energy, vol. 29, no. 10, pp. 985–990, 2004, doi: 10.1016/j.ijhydene.2003.10.011.
[16] M. S.Wilson, J. A.Valerio, andS.Gottesfeld, “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers,” Electrochim. Acta, vol. 40, no. 3, pp. 355–363, 1995, doi: 10.1016/0013-4686(94)00272-3.
[17] S.Litster andG.McLean, “PEM fuel cell electrodes,” J. Power Sources, vol. 130, no. 1–2, pp. 61–76, 2004, doi: 10.1016/j.jpowsour.2003.12.055.
[18] E. J.Taylor, E. B.Anderson, andN. R. K.Vilambi, “ELECTROCHEMICAL SOCIETY LETTERS Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells,” Business, vol. 139, no. 5, pp. 45–46, 1992.
[19] M. S.Wilson andS.Gottesfeld, “High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., vol. 139, no. 2, pp. L28–L30, 1992, doi: 10.1149/1.2069277.
[20] S.Chen, P. J.Ferreira, W.Sheng, N.Yabuuchi, L. F.Allard, andY.Shao-Horn, “Enhanced activity for oxygen reduction reaction on ‘Pt 3Co’ nanoparticles: Direct evidence of percolated and sandwich-segregation structures,” J. Am. Chem. Soc., vol. 130, no. 42, pp. 13818–13819, 2008, doi: 10.1021/ja802513y.
[21] B.Han et al., “Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells,” Energy Environ. Sci., vol. 8, no. 1, pp. 258–266, 2015, doi: 10.1039/c4ee02144d.
[22] A. U.Nilekar et al., “Bimetallic and ternary alloys for improved oxygen reduction catalysis,” Top. Catal., vol. 46, no. 3–4, pp. 276–284, 2007, doi: 10.1007/s11244-007-9001-z.
[23] V. R.Stamenkovic et al., “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability,” Science (80-. )., vol. 315, no. 5811, pp. 493–497, 2007, doi: 10.1126/science.1135941.
[24] V. R.Stamenkovic et al., “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces,” Nat. Mater., vol. 6, no. 3, pp. 241–247, 2007, doi: 10.1038/nmat1840.
[25] S.Chen, H. A.Gasteiger, K.Hayakawa, T.Tada, andY.Shao-Horn, “Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes,” J. Electrochem. Soc., vol. 157, no. 1, p. A82, 2010, doi: 10.1149/1.3258275.
[26] K. J. J.Mayrhofer, K.Hartl, V.Juhart, andM.Arenz, “Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation,” J. Am. Chem. Soc., vol. 131, no. 45, pp. 16348–16349, 2009, doi: 10.1021/ja9074216.
[27] L.Du, Y.Shao, J.Sun, G.Yin, J.Liu, andY.Wang, “Advanced catalyst supports for PEM fuel cell cathodes,” Nano Energy, vol. 29, pp. 314–322, 2016, doi: 10.1016/j.nanoen.2016.03.016.
[28] M.Breitwieser, M.Klingele, B.Britton, S.Holdcroft, R.Zengerle, andS.Thiele, “Electrochemistry Communications Improved Pt-utilization ef fi ciency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition,” Electrochem. commun., vol. 60, pp. 168–171, 2015, doi: 10.1016/j.elecom.2015.09.006.
[29] M.Klingele, M.Breitwieser, R.Zengerle, andS.Thiele, “Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells,” J. Mater. Chem. A, vol. 3, no. 21, pp. 11239–11245, 2015, doi: 10.1039/c5ta01341k.
[30] S.Vierrath, M.Breitwieser, M.Klingele, andR.Zen-, “Reasons for the high power density of direct membrane deposition fuel cells revealed by impedance spectroscopy,” p. 11239, 2015.
[31] S.Cuynet et al., “Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings,” J. Power Sources, vol. 298, pp. 299–308, 2015, doi: 10.1016/j.jpowsour.2015.08.019.
[32] J. K.Koh, Y.Jeon, Y.IlCho, J. H.Kim, andY. G.Shul, “A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications,” J. Mater. Chem. A, vol. 2, no. 23, pp. 8652–8659, 2014, doi: 10.1039/c4ta00674g.
[33] C.Spiegel et al., Designing and Building Fuel Cells Library of Congress Cataloging-in-Publication Data. 2007.
[34] V. S. (Vladimir S.Bagot︠s︡kiĭ, Fuel cells : problems and solutions / Vladimir S. Bagotsky., 2nd ed. Hoboken, N.J. : Chichester: John Wiley & Sons ; John Wiley [distributor], 2012.
[35] S.Garc’ia-Rodr’iguez, T.Herranz, andS.Rojas, “Electrocatalysts for the Electrooxidation of Ethanol,” New Futur. Dev. Catal. Batter. Hydrog. Storage Fuel Cells2013, pp. 33–67, 2013.
[36] C.Lamy, C.Coutanceau, andJ.-M.Leger, “The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy,” Catal. Sustain. energy Prod., p. 3, 2009.
[37] M. Z. F.Kamarudin, S. K.Kamarudin, M. S.Masdar, andW. R. W.Daud, “Review: Direct ethanol fuel cells,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9438–9453, 2013, doi: https://doi.org/10.1016/j.ijhydene.2012.07.059.
[38] Z. W.Chia andJ. Y.Lee, “Fuel Cells: Direct Ethanol,” Encycl. Inorg. Chem., 2006.
[39] X.-Z.Yuan andH.Wang, “PEM fuel cell fundamentals,” in PEM fuel cell electrocatalysts and catalyst layers, Springer, 2008, pp. 1–87.
[40] R.Crisafulli, R. M.Antoniassi, A.Oliveira Neto, andE.VSpinacé, “Acid-treated PtSn/C and PtSnCu/C electrocatalysts for ethanol electro-oxidation,” Int. J. Hydrogen Energy, vol. 39, no. 11, pp. 5671–5677, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.01.111.
[41] T. S.Almeida, L. M.Palma, P. H.Leonello, C.Morais, K. B.Kokoh, andA. R.DeAndrade, “An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts,” J. Power Sources, vol. 215, pp. 53–62, 2012, doi: https://doi.org/10.1016/j.jpowsour.2012.04.061.
[42] B.Lin, “Conceptual design and modeling of a fuel cell scooter for urban Asia,” J. Power Sources, vol. 86, no. 1, pp. 202–213, 2000, doi: 10.1016/S0378-7753(99)00480-2.
[43] Canyon Hydro et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. 32, no. July, pp. 137–144, 2013, doi: 10.5772/2820.
[44] R.Manual, “COMSOL Multiphysics Reference Manual.”
[45] D. F.Cheddie, “Modelling of Ammonia-Fed Solid Oxide Fuel Cells in COMSOL,” vol. 2, no. 7, pp. 1–5, 2013.
[46] W.Kong, H.Zhu, Z.Fei, andZ.Lin, “A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode,” J. Power Sources, vol. 206, pp. 171–178, 2012, doi: 10.1016/j.jpowsour.2012.01.107.
[47] M.Jourdani, H.Mounir, andA.Marjani, “Three-dimensional PEM fuel cells modeling using COMSOL multiphysics,” Int. J. Multiphys., vol. 11, no. 4, pp. 427–442, 2017, doi: 10.21152/1750-9548.11.4.427.
[48] X.Zhang, D.Song, Q.Wang, C.Huang, andZ.-S.Liu, “Influence of Anisotropic Transport Properties of the GDL on the Performance of PEMFCs,” ECS Trans., vol. 16, no. 2, pp. 913–923, 2019, doi: 10.1149/1.2981930.
[49] J.Lobato, P.Cañizares, M. A.Rodrigo, F. J.Pinar, E.Mena, andD.Úbeda, “Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5510–5520, 2010, doi: 10.1016/j.ijhydene.2010.02.089.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2021-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明