博碩士論文 108328020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.133.142.253
姓名 李光鑫(Kuang-Hsin Li)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 雷射拋光對選擇性雷射熔融製造高含量氮化鈦金屬陶瓷的影響
(Effects of Laser Polishing on High-TiN Cermet Fabricated by Selective Laser Melting)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬陶瓷具有未來潛在應用的高機械性能材料,目前為止,通過選擇性雷射熔融 (SLM) 製造的非原位金屬陶瓷種類較少。在本研究中,主要用500 W連續式雷射之選擇性雷射熔融TiN-SUS 420金屬陶瓷樣品,以同步方式進行其拋光,首先由不同雷射功率對TiN-SUS 420(50 wt%-50 wt%)觀察,選擇較佳的參數進行不同 TiN 含量燒結,觀察其緻密化行為、微觀結構、硬度、破裂韌性。結果表明,添加TiN對密度有很大影響,這主要是其對粉末的雷射吸收率和液態金屬的潤濕性有影響,不僅如此,粉體粒徑也有相對關係。隨著雷射功率的增加,TiN的擴散行為變得更強,金屬陶瓷的緻密化得到改善,對於TiN-SUS 420(50 wt%-50 wt%)可獲得最大相對密度達到90.74%。通過SEM、XRD結果研究了TiN顆粒的分佈和固溶體。優化後的複合材料達到823.67 HV1的高硬度,比選擇性雷射熔融製造的 (SLMed) SUS 420相對來得高,一般SUS 420的硬度為250 HV附近。再藉由雷射拋光技術,使材料表面開始熔化,由於表面張力的多向作用下,材料表面的“波峰”與“波谷”重新定位。然後通過能量密度的調整下,實現不同的表面粗糙度、微觀結構與緻密性等機械性質的影響,分別和SLMed樣品進行機械性質比較,並以材料的特性配合雷射加工後的結構,解決後加工等相關問題,不僅減少繁雜工序,還降低勞動成本。
摘要(英) Cermets have potential applications as materials with high mechanical properties in the future. So far, there are few types of ex-situ cermets manufactured by selective laser melting (SLM). In this study, the selective laser of 500 W continuous fiber laser was mainly used to melt the TiN-SUS 420 cermet sample, and the polishing was performed in a synchronous manner. First, the TiN-SUS 420 (50 wt%- 50 wt%), select better parameters for sintering with different TiN content, and observe its densification behavior, microstructure, hardness, and fracture toughness. The results show that the addition of TiN has a great influence on the density, which is mainly because it has an influence on the laser absorption rate of the powder and the wettabil-ity of the liquid metal. Not only that, but also the particle size of the powder has a relative rela-tionship. With the increase of laser power, the diffusion behavior of TiN becomes stronger, and the densification of cermet is improved. For TiN-SUS 420 (50 wt%-50 wt%), the maximum relative density of 90.74% can be obtained. The distribution and solid solution of TiN particles were studied by SEM and XRD results. After optimized parameters, the composite material achieves a high hardness of 823.67 HV1, which is relatively higher than that of SUS 420 manufactured by SLMed. Generally, the hardness of SUS 420 is about 250 HV. With laser polishing technology, the surface of the material starts to melt. Due to the multi-directional action of surface tension, the "wave peaks" and "wave valleys" of the material will be automatically repositioned. Then, through the adjustment of energy density, the effects of different mechanical properties such as surface roughness, microstructure and compactness are realized. The mechanical properties of the laser polished SLMed samples were compared with the SLMed samples, and the characteristics of the materials are matched with the structure after laser processing to solve the problem. Related issues such as post-processing not only reduce complicated procedures, but also reduce labor costs.
關鍵字(中) ★ TiN 金屬陶瓷
★ 選擇性雷射熔融
★ 雷射拋光
★ 高硬度
★ 高破裂韌性
★ 切削刀具應用
關鍵字(英) ★ TiN cermets
★ selective laser melting
★ laser polishing
★ high hardness
★ high fracture toughness
★ cutting tool application
論文目次 中文摘要 v
ABSTRACT vi
CONTENTS viii
術語表格 xii
LIST OF FIGURES xiii
LIST OF TABLES xvi
Chapter 1 緒論 1
1-1 背景 1
1-2 研究目的與動機 4
Chapter 2 文獻回顧與基礎理論 6
2-1 金屬陶瓷之介紹與發展 6
2-2 氮化鈦陶瓷介紹 8
2-3 氮化鈦金屬陶瓷介紹 8
2-3-1 氮化鈦金屬陶瓷之歷史發展 9
2-3-2 氮化鈦金屬陶瓷應用 9
2-4 積層製造金屬陶瓷技術 10
2-4-1 電子束熔煉(EBAM) 11
2-4-2 雷射近淨成型(LENS) 12
2-4-3 選擇性雷射燒結(SLS) 13
2-4-4 選擇性雷射熔融(SLM) 14
2-4-5 積層製造技術優劣 18
2-5 雷射表面拋光技術 19
2-5-1 微觀雷射拋光 19
2-5-2 宏觀雷射拋光 20
2-5-3 雷射拋光技術優劣 21
2-6 動機與挑戰 22
Chapter 3 實驗步驟與方法 23
3-1 實驗架構與流程 23
3-2 粉體之製備與分析 23
3-2-1 金屬陶瓷之製備 23
3-2-2 粉體粒徑篩選 25
3-2-3 金屬陶瓷粉體混合方法 26
3-3 金屬陶瓷粉體之特性分析 26
3-3-1 粉體表面形貌觀察 26
3-3-2 粉體成分分析(FEI, Inspect F50) 28
3-3-3 金屬陶瓷粉體之相組成觀察 28
3-3-4 粉體之霍爾流動速率測試 29
3-4 研究系統相關介紹 30
3-4-1 雷射積層製造系統裝置 30
3-4-2 雷射參數規劃 31
3-4-3 線條燒結測試 32
3-4-4 塊材燒結測試 32
3-5 選擇性雷射熔融與雷射拋光之氮化鈦金屬陶瓷性能分析 34
3-5-1 線條寬度與表面輪廓量測 34
3-5-2 表面粗糙度量測 35
3-5-3 緻密性與微觀結構觀察 36
3-5-4 金屬陶瓷之相組成觀察 36
3-5-5 相對密度量測 36
3-5-6 硬度測試 37
3-5-7 破裂韌性測試 39
3-6 研究設備及檢測儀器 40
Chapter 4 結果與討論 41
4-1 金屬陶瓷粉體之特性分析 41
4-1-1 粉體表面形貌分析 41
4-1-2 粉體成分分析 42
4-1-3 金屬陶瓷粉體之相組成 44
4-1-4 粉體之霍爾流動速率 45
4-2 選擇性雷射熔融與雷射拋光之氮化鈦金屬陶瓷性能分析 46
4-2-1 線條表面形貌分析 46
4-2-2 樣品表面形貌分析 48
4-2-3 樣品之表面粗糙度分析 50
4-2-4 樣品之微觀結構分析 52
4-2-5 金屬陶瓷之相組成分析 59
4-2-6 金屬陶瓷之相對密度分析 61
4-2-7 金屬陶瓷之硬度分析 64
4-2-8 金屬陶瓷之破裂韌性分析 66
Chapter 5 結論 68
參考文獻 70
碩士論文口試教授問題集 76
參考文獻 [1] W. Lengauer and F. Scagnetto, "Ti (C, N)-based cermets: critical review of achievements and recent developments," in Solid State Phenomena, 2018, vol. 274: Trans Tech Publ, pp. 53-100.
[2] R. H. Wang et al., "Effect of Molding Pressure on Densification of Al2O3/Al Cermet Materials," 2017, vol. 893: Trans Tech Publ, pp. 100-104.
[3] A. Ataollahi Oshkour, S. Pramanik, S. F. S. Shirazi, M. Mehrali, Y.-H. Yau, and N. A. Abu Osman, "A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement," The Scientific World Journal, vol. 2014, 2014.
[4] T. Rodriguez-Suarez, J. F. Bartolomé, and J. S. Moya, "Mechanical and tribological properties of ceramic/metal composites: A review of phenomena spanning from the nanometer to the micrometer length scale," Journal of the European Ceramic Society, vol. 32, no. 15, pp. 3887-3898, 2012.
[5] K. Niespodziana, K. Jurczyk, and M. Jurczyk, "Titanium-ceramic nanocomposites fabricated by the mechanical alloying process," Materials Science-Poland, vol. 26, no. 2, 2008.
[6] H. Howard and T. Gall, "Metals Handbook American Society for Metals," Metals Park, OH, 1985.
[7] R. M. German, Particulate Composites. Springer, 2016.
[8] B. Fang et al., "Effect of c-BN surface modification on the microstructure and mechanical properties of (Ti, W) C-based cermet tool materials," Ceramics International, vol. 46, no. 8, pp. 12145-12155, 2020.
[9] L. Jaworska, M. Rozmus, B. Królicka, and A. Twardowska, "Functionally graded cermets," Journal of Achievements in Materials and Manufacturing Engineering, vol. 17, no. 1-2, pp. 73-76, 2006.
[10] A. Zikin, M. Antonov, I. Hussainova, L. Katona, and A. Gavrilović, "High temperature wear of cermet particle reinforced NiCrBSi hardfacings," Tribology International, vol. 68, pp. 45-55, 2013.
[11] E. O. Ezugwu, "The performance of cermet cutting tool materials in the machining of steels," 1998, vol. 138: Trans Tech Publ, pp. 417-448.
[12] L. Ni, Q. Zheng, and J. Xiong, "Cutting wear, microstructure and mechanical properties of (Ti0. 5, W0. 5) C-based cermet inserts containing Mo2C," International Journal of Refractory Metals and Hard Materials, vol. 68, pp. 151-158, 2017.
[13] R. Brengle, R. Harty, and S. Bhattacharyya, "The promise and challenges of cermet fueled nuclear thermal propulsion reactors," 1993, p. 2111.
[14] A. Antonaia, A. Castaldo, M. L. Addonizio, and S. Esposito, "Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature," Solar Energy Materials and Solar Cells, vol. 94, no. 10, pp. 1604-1611, 2010.
[15] J. H. Perepezko, J. M. Bero, R. Sakidja, I. G. Talmy, and J. Zaykoski, "Oxidation resistant coatings for refractory metal cermets," Surface and Coatings Technology, vol. 206, no. 19-20, pp. 3816-3822, 2012.
[16] D. S. Barratt, N. Filkin, and I. Bakker, "Cermet cathodes: A new technology for CRT applications," Journal of the Society for Information Display, vol. 12, no. 1, pp. 23-28, 2004.
[17] K. H. Chung, G. T. Liu, J. G. Duh, and J. H. Wang, "Biocompatibility of a titanium–aluminum nitride film coating on a dental alloy," Surface and Coatings Technology, vol. 188, pp. 745-749, 2004.
[18] V.-A. Şerban, R. A. Roşu, A. I. Bucur, and D. R. Pascu, "Deposition of titanium nitride layers by electric arc–Reactive plasma spraying method," Applied Surface Science, vol. 265, pp. 245-249, 2013.
[19] D. V. Shtansky et al., "Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications," Biomaterials, vol. 26, no. 16, pp. 2909-2924, 2005.
[20] M. Hoseini, A. Jedenmalm, and A. Boldizar, "Tribological investigation of coatings for artificial joints," Wear, vol. 264, no. 11-12, pp. 958-966, 2008.
[21] S. Sedira, S. Achour, A. Avci, and V. Eskizeybek, "Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use," Applied surface science, vol. 295, pp. 81-85, 2014.
[22] X. Gong, T. Anderson, and K. Chou, "Review on powder-based electron beam additive manufacturing technology," 2012, vol. 45110: American Society of Mechanical Engineers, pp. 507-515.
[23] I. Gibson, D. Rosen, and B. Stucker, "Directed energy deposition processes," in Additive manufacturing technologies: Springer, 2015, pp. 245-268.
[24] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, "Binding mechanisms in selective laser sintering and selective laser melting," Rapid prototyping journal, 2005.
[25] A. Temmler, E. Willenborg, and K. Wissenbach, "Laser polishing," 2012, vol. 8243: International Society for Optics and Photonics, p. 82430W.
[26] C. Turchi, "Cermet material could aid the development of future power plants," ed: Nature Publishing Group, 2018.
[27] K. Schröter, "Gesinterte harte Metalllegierungen und Verfahren zu ihrer Herstellung," DE Patent, vol. 420689, 1923.
[28] H. I. Schwarzkopf P, "Mehrere Metallkarbide enthaltendes Hartmetall," insbesondere für Formkörper oder Werkzeugteile Austrian Patent AT160172, 1931.
[29] R. Kieffer and F. Kölbl, "Über die Entwicklung und Eigenschaften warm-und zunderfester Hartlegierungen auf Titankarbidbasis mit Nickel-Kobalt-Chrom-Bindern Planseeber," Pulvermetall, vol. 1, pp. 17-35, 1952.
[30] R. J. C. a. G. J. W, "Met. Progr.," no. 61(4), pp. 67-70, 1952.
[31] D. M. a. M. Humenic, "in: Modern Developments in Powder Metallurgy, ed," by H. H. Hausner, Vol. 3 (1966) 83 Plenum Press, 1966.
[32] N. M. Parikh and M. Humenik Jr, "Cermets: II, Wettability and microstructure studies in liquid‐phase sintering," Journal of the American Ceramic Society, vol. 40, no. 9, pp. 315-320, 1957.
[33] M. H. a. D. Moskowitz, US, 1961.
[34] P. Ettmayer and W. Lengauer, "The story of cermets," Powder Metall. Int., vol. 21, no. 2, pp. 37-38, 1989.
[35] V. К. Prokudina, "Titanium Nitride," in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, pp. 398-401.
[36] H. Kuwahara, N. Mazaki, M. Takahashi, T. Watanabe, X. Yang, and T. Aizawa, "Mechanical properties of bulk sintered titanium nitride ceramics," Materials Science and Engineering: A, vol. 319, pp. 687-691, 2001.
[37] L. Laperrière and G. Reinhart, CIRP encyclopedia of production engineering. Springer Berlin, 2014.
[38] F. K. DAVEY, E. R. OLABAU, and G. E. LOREY, "TITANIUM NITRIDE CERMETS," RUTGERS UNIVERSITY, WRIGHT AIR DEVELOPMENT CENTER, VADC TECHNICAL REPORT 52-155, 1952.
[39] E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, "Wear resistance investigation of titanium nitride-based coatings," Ceramics international, vol. 41, no. 9, pp. 10349-10379, 2015.
[40] A. Aramian, S. M. J. Razavi, Z. Sadeghian, and F. Berto, "A review of additive manufacturing of cermets," Additive Manufacturing, vol. 33, p. 101130, 2020.
[41] W. E. Frazier, "Metal additive manufacturing: a review," Journal of Materials Engineering and performance, vol. 23, no. 6, pp. 1917-1928, 2014.
[42] K. V. Wong and A. Hernandez, "A review of additive manufacturing," International scholarly research notices, vol. 2012, 2012.
[43] A. Gebhardt, "Understanding additive manufacturing," 2011.
[44] M. D. Monzón, Z. Ortega, A. Martínez, and F. Ortega, "Standardization in additive manufacturing: activities carried out by international organizations and projects," The international journal of advanced manufacturing technology, vol. 76, no. 5-8, pp. 1111-1121, 2015.
[45] C. Körner, "Additive manufacturing of metallic components by selective electron beam melting—a review," International Materials Reviews, vol. 61, no. 5, pp. 361-377, 2016.
[46] A. S. Klimov, I. Y. Bakeev, E. M. Oks, and A. A. Zenin, "Electron-beam sintering of an Al2O3/Ti composite using a forevacuum plasma-cathode electron source," Ceramics International, vol. 46, no. 14, pp. 22276-22281, 2020.
[47] M. F. Zäh and S. Lutzmann, "Modelling and simulation of electron beam melting," Production Engineering, vol. 4, no. 1, pp. 15-23, 2010.
[48] S. Negi et al., "Review on electron beam based additive manufacturing," Rapid Prototyping Journal, 2019.
[49] P. Yu, M. Qian, D. Tomus, C. A. Brice, G. B. Schaffer, and B. C. Muddle, "Electron beam processing of aluminium alloys," 2009, vol. 618: Trans Tech Publ, pp. 621-626.
[50] D. Cormier, O. Harrysson, and H. West, "Characterization of H13 steel produced via electron beam melting," Rapid prototyping journal, 2004.
[51] S. M. Gaytan et al., "Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting," Metallurgical and Materials Transactions A, vol. 41, no. 12, pp. 3216-3227, 2010.
[52] A. S. Klimov, I. Y. Bakeev, E. S. Dvilis, E. M. Oks, and A. A. Zenin, "Electron beam sintering of ceramics for additive manufacturing," Vacuum, vol. 169, p. 108933, 2019.
[53] H. Peng, C. Liu, H. Guo, Y. Yuan, S. Gong, and H. Xu, "Fabrication of WCp/NiBSi metal matrix composite by electron beam melting," Materials Science and Engineering: A, vol. 666, pp. 320-323, 2016.
[54] C. Atwood et al., "Laser engineered net shaping (LENS™): A tool for direct fabrication of metal parts," 1998, vol. 1998: Laser Institute of America, 1 ed., pp. E1-E7.
[55] Y. Xiong, J. E. Smugeresky, L. Ajdelsztajn, and J. M. Schoenung, "Fabrication of WC–Co cermets by laser engineered net shaping," Materials Science and Engineering: A, vol. 493, no. 1-2, pp. 261-266, 2008.
[56] M. Saha and M. Mallik, "Additive manufacturing of ceramics and cermets: present status and future perspectives," Sādhanā, vol. 46, no. 3, pp. 1-35, 2021.
[57] Y. Xiong, J. E. Smugeresky, and J. M. Schoenung, "The influence of working distance on laser deposited WC–Co," Journal of Materials Processing Technology, vol. 209, no. 10, pp. 4935-4941, 2009.
[58] A.-N. Chen et al., "High-performance ceramic parts with complex shape prepared by selective laser sintering: a review," Advances in Applied Ceramics, vol. 117, no. 2, pp. 100-117, 2018.
[59] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, "Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences," ed: ACS Publications, 2014.
[60] 蔡恆毅. (2017) 選擇性雷射燒熔製程. 工業材料雜誌. 112-121.
[61] X. Zhao, Q. S. Wei, N. Gao, E. L. Zheng, Y. S. Shi, and S. F. Yang, "Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing," Journal of Materials Processing Technology, vol. 270, pp. 8-19, 2019.
[62] C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, and D. Q. Zhang, "LE LOH a SL SING. Review of selective laser melting: Materials and applications," Applied Physics Reviews.
[63] X. Zhao et al., "Fabrication and characterization of AISI 420 stainless steel using selective laser melting," Materials and Manufacturing Processes, vol. 30, no. 11, pp. 1283-1289, 2015.
[64] I. Yadroitsev and I. Smurov, "Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape," Physics Procedia, vol. 5, pp. 551-560, 2010.
[65] L. Wang, Q. S. Wei, Y. S. Shi, J. H. Liu, and W. T. He, "Experimental investigation into the single-track of selective laser melting of IN625," 2011, vol. 233: Trans Tech Publ, pp. 2844-2848.
[66] I. Yadroitsev, P. Bertrand, and I. Smurov, "Parametric analysis of the selective laser melting process," Applied surface science, vol. 253, no. 19, pp. 8064-8069, 2007.
[67] I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, "Single track formation in selective laser melting of metal powders," Journal of Materials Processing Technology, vol. 210, no. 12, pp. 1624-1631, 2010.
[68] W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, "Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM," The International Journal of Advanced Manufacturing Technology, vol. 58, no. 9, pp. 1189-1199, 2012.
[69] S. D. Nath, H. Irrinki, G. Gupta, M. Kearns, O. Gulsoy, and S. Atre, "Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion," Powder Technology, vol. 343, pp. 738-746, 2019.
[70] L. Lu, J. Y. H. Fuh, Z. D. Chen, C. C. Leong, and Y. S. Wong, "In situ formation of TiC composite using selective laser melting," Materials Research Bulletin, vol. 35, no. 9, pp. 1555-1561, 2000.
[71] B. AlMangour, D. Grzesiak, and J.-M. Yang, "In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting," Journal of Alloys and Compounds, vol. 706, pp. 409-418, 2017.
[72] D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, "Laser additive manufacturing of metallic components: materials, processes and mechanisms," International materials reviews, vol. 57, no. 3, pp. 133-164, 2012.
[73] Q. Jia and D. Gu, "Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance," Journal of Materials Research, vol. 29, no. 17, pp. 1960-1969, 2014.
[74] W. Zhai, Z. Zhu, W. Zhou, S. M. L. Nai, and J. Wei, "Selective laser melting of dispersed TiC particles strengthened 316L stainless steel," Composites Part B: Engineering, vol. 199, p. 108291, 2020.
[75] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, "Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy," Materials, vol. 11, no. 12, p. 2343, 2018.
[76] L. Liu, T. Minasyan, R. Ivanov, S. Aydinyan, and I. Hussainova, "Selective laser melting of TiB2-Ti composite with high content of ceramic phase," Ceramics International, vol. 46, no. 13, pp. 21128-21135, 2020.
[77] H. Choi, J. M. Byun, W. Lee, S.-R. Bang, and Y. D. Kim, "Research Trend of Additive Manufacturing Technology-A= B+ C+ D+ E, add Innovative Concept to Current Additive Manufacturing Technology: Four Conceptual Factors for Building Additive Manufacturing Technology," Journal of Korean Powder Metallurgy Institute, vol. 23, no. 2, pp. 149-169, 2016.
[78] A. Lamikiz, J. A. Sánchez, L. N. López de Lacalle, D. Del Pozo, and J. M. Etayo, "Surface roughness improvement using laser-polishing techniques," 2006, vol. 526: Trans Tech Publ, pp. 217-222.
[79] A. Krishnan and F. Fang, "Review on mechanism and process of surface polishing using lasers," Frontiers of Mechanical Engineering, vol. 14, no. 3, pp. 299-319, 2019.
[80] T. L. Perry, D. Werschmoeller, X. Li, F. E. Pfefferkorn, and N. A. Duffie, "Micromelting for laser micro polishing of meso/micro metallic components," 2007, vol. 42908, pp. 363-369.
[81] J. Kumstel and B. Kirsch, "Polishing titanium-and nickel-based alloys using cw-laser radiation," Physics procedia, vol. 41, pp. 362-371, 2013.
[82] Z. Xiao, C. Chen, Z. Hu, H. Zhu, and X. Zeng, "Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V," Optics & Laser Technology, vol. 122, p. 105890, 2020.
[83] W. Yu, S. L. Sing, C. K. Chua, and X. Tian, "Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting," Journal of Alloys and Compounds, vol. 792, pp. 574-581, 2019.
[84] A. Nanakoudis. "Phenom Desktop SEM Blogs." Fisher Scientific Phenom (accessed.
[85] H. M. Ismaeel et al., "Energy Absorption Ability of Thin-Walled Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static Axial Compression," Journal of Advanced Research in Applied Mechanics, vol. 18, pp. 1-14, 2016.
[86] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements," Journal of the American Ceramic Society, vol. 64, no. 9, pp. 533-538, 1981.
[87] J. Clayton, "Optimising metal powders for additive manufacturing," Metal Powder Report, vol. 69, no. 5, pp. 14-17, 2014.
[88] Q. B. Nguyen, M. L. S. Nai, Z. Zhu, C.-N. Sun, J. Wei, and W. Zhou, "Characteristics of inconel powders for powder-bed additive manufacturing," Engineering, vol. 3, no. 5, pp. 695-700, 2017.
[89] H. Liao, H. Zhu, J. Zhu, S. Chang, and X. Zeng, "Effect of Process Parameters on Selective Laser Melting Al2O3-Al Cermet Material," 2019, pp. 12-14.
[90] W. Ma, F. Tao, C. Jia, and X. Men, "Research on microstructure and forming mechanism of TiC/1Cr12Ni3Mo2V composite based on laser solid forming," Open Physics, vol. 17, no. 1, pp. 334-339, 2019.
[91] S. Wang et al., "Thermodynamic modeling of Ti-Fe-Cr ternary system," Calphad, vol. 56, pp. 160-168, 2017.
[92] H. Z. Moghaddam, M. Sharifitabar, and G. Roudini, "Microstructure and wear properties of Fe–TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures," Surface and Coatings Technology, vol. 361, pp. 91-101, 2019.
[93] Y. Lv, J. G. Li, M. Z. Wu, X. P. Zhang, and H. T. Wu, "In situ fabrication of TiC/Fe composites by SHS technology," 2014, vol. 1033: Trans Tech Publ, pp. 896-899.
[94] B. AlMangour and D. Grzesiak, "Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content," Materials & Design, vol. 104, pp. 141-151, 2016.
[95] H. Attar, M. Bönisch, M. Calin, L.-C. Zhang, S. Scudino, and J. Eckert, "Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties," Acta Materialia, vol. 76, pp. 13-22, 2014.
[96] K. B. Panda and K. S. R. Chandran, "Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties," Metallurgical and materials transactions A, vol. 34, no. 6, pp. 1371-1385, 2003.
[97] B. AlMangour, D. Grzesiak, and J.-M. Yang, "Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting," Journal of Alloys and Compounds, vol. 680, pp. 480-493, 2016.
[98] D. Vallauri and F. A. Deorsola, "Synthesis of TiC–TiB2–Ni cermets by thermal explosion under pressure," Materials Research Bulletin, vol. 44, no. 7, pp. 1528-1533, 2009.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明