博碩士論文 108523039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:13.58.140.60
姓名 李沛豐(Pei-Feng Lee)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 低軌道衛星系統之增強型隨機接入時槽之設計
(The Design of Enhanced RACH Occasion in LEO-NTN)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著近期低軌道衛星之進展,衛星通訊已被納入第五代通訊中之非地面網路,並寄望於補足地面基地台無法完整布建的缺口,實現無縫覆蓋之願景。3GPP 也著手於基於 New Radio (NR) 技術之非地面網路之研究與排定其於NR Rel-17 中之工作項目。然而,由於衛星通訊的固有特性,部分 NR 功能需要重新評估設計。其中,影響隨機接入程序最多即是低軌道衛星通訊系統之長傳輸延遲。因應長傳輸延遲,隨機接入程序中之部分參數與資源安排都應重新審視。在 NR Rel-17 中,假設非地面網路之用戶均配備GNSS功能,意即用戶知曉自己的位置訊息。基於上述前提,本論文為基於 NR 之低軌道衛星系統提出了新的隨機接入時槽 ( RO ) 設計。
在設計過程中,考量到場景中可能具有或不具有 GNSS 能力的用戶(G-UE 或 nG-UE),分別排程它們的隨機接入時槽,G-UE 使用G-RO;nG-UE 使用nG-RO。基於此獨立排程設計,本論文提出了三種可以由網路配置的 RO 模式:ROpair, Overlapped RO 與 Non-Overlapped RO。ROpair即是以相同的週期排程 G-RO 和 nG-RO;Overlapped RO 和Non-Overlapped RO則是使用不同的週期排程 G-RO 和 nG-RO,差別於允許G-RO 和 nG-RO 重疊與否。
為了驗證提出之 RO 模式的有效性,本論文透過模擬評估存取所需之延遲。模擬結果顯示分別調度 G-RO 和 nG-RO 的優點有兩個。其一,所有用戶的平均接入延遲明顯降低。再者,nG-UE之平均接入延遲較不會受未來G-UE數量增長影響。此外,本論文亦分析了在不同前導碼分配比情況下,Overlapped RO 之性能有何差異。
摘要(英) With the recent advances in low earth orbit (LEO) constellation, satellite communication (SATCOM) has been included in Non-Terrestrial Network (NTN) and recognized as a promising solution to extend services to unserved area in 5G networks. 3GPP has also considered to develop NR-based NTN, however, part of NR functions should be re-worked duo to SATCOM inherent characteristics. In NR-based NTN, user equipments (UEs) are anticipated to be GNSS-enabled in NTN scenarios in NR Rel-17. Based on the aforementioned features, we propose three novel RACH Occasions (RO) patterns for LEO-NTN.
Though user terminals are assumed to have location information, we design RO patterns with backward compatibility, namely, users who is not aware of its own location are also considered. For UEs with or without GNSS capability (G-UE or nG-UE), we propose to schedule their RO separately, G-RO for G-UE, nG-RO for nG-UE. In this work, we propose three RO patterns that could be flexibly configured by the network. Specifically, scheduling G-RO and nG-RO with same periodicity, we propose RO pair, contrarily with different periodicity, we propose overlapped RO and non-overlapped RO.
To validate the effectiveness of proposed RO patterns, we review the preamble transmission delays through computer simulation. Advantages of scheduling G-RO and nG-RO separately are two-fold. Firstly, simulation results show that average delay of successful preamble transmission for all UEs is reduced. Secondly, nG-UEs are relatively more insusceptible to expected increment of G-UE number in the future. Moreover, we investigate the performance of overlapped RO with different preamble division ratio.
關鍵字(中) ★ 第五代行動通訊
★ 非地面網路
★ 衛星通訊
★ 低軌道衛星
★ 隨機接入時槽
關鍵字(英) ★ 5G New Radio
★ Non-Terrestrial Networks
★ Satellite Communication
★ Low Earth Orbit
★ RACH Occasion
論文目次 中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES v
Chapter 1. INTRODUCTION 1
Chapter 2. BACKGROUND 3
2.1. Non-Terrestrial Network 3
2.1.1. Use Cases 3
2.1.2. NTN Platforms 4
2.1.3. NTN Access Architecture 5
2.2. Random Access Procedure 8
2.2.1. NR Random Access Procedure Overview 8
2.2.2. RACH Occasion Problem Statement in [5] 10
2.2.3. Delay Difference in LEO-NTN 11
2.3. Timing Advance 12
Chapter 3. RELATED WORK 14
Chapter 4. ENHANCED RACH OCCASION DESIGN 15
4.1. ROpair 15
4.2. Overlapped G-RO and nG-RO (O-RO) 18
4.3. Non-Overlapped G-RO and nG-RO (NO-RO) 20
4.4. TA adjustment for G-RO 22
Chapter 5. PERFORMANCE EVALUATION 23
5.1. Preamble Transmission Delay Calculation 24
5.2. Simulation Results and Discussion 25
Chapter 6. CONCLUSIONS AND FUTURE WORK 31
REFERENCES 32
參考文獻 [1] F. Rinaldi et al., "Non-Terrestrial Networks in 5G & Beyond: A Survey," in IEEE Access, vol. 8, pp. 165178-165200, 2020
[2] Inigo del Portillo, Bruce G. Cameron, Edward F. Crawley, “A technical comparison of three low earth orbit satellite constellation systems to provide global broadband,” Acta Astronautica, Volume 159, 2019, Pages 123-135
[3] Nils Pachler, Inigo del Portillo, Edward F. Crawley, Bruce G. Cameron, “An Updated Comparison of Four Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband,” Acta Astronautica, 2019
[4] Study on New Radio (NR) to Support Non-Terrestrial Networks, 3GPP TR 38.811, Release 15, Oct. 2019.
[5] Solutions for NR to Support Non-Terrestrial Networks (NTN), 3GPP TR 38.821, Release 16, Jan. 2020.
[6] Lin, Xingqin, et al. "5G from Space: An Overview of 3GPP Non-Terrestrial Networks." arXiv preprint arXiv:2103.09156 (2021).
[7] M. Series, “IMT vision - Framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU, pp. 2083-0, 2015.
[8] Study on using satellite access in 5G, 3GPP TR 22.822, V16.0.0, August 2018.
[9] “NG-RAN; Architecture Description,” 3GPP TS 38.401, v16.5.0 April 2021
[10] “NR and NG-RAN Overall description,” 3GPP TS 38.300, v16.5.0 March 2021
[11] “Medium Access Control (MAC) protocol specification,”3GPP TS 38.321, V16.4.0, Mar. 2021
[12] “Physical layer procedures for control,” 3GPP TS 38.213, V16.2.0, Jun. 2020.
[13] “NR; Requirements for support of radio resource management,” 3GPP TS 38.133, v16.7.0, April 2021
[14] “Physical channels and modulation,” 3GPP TS 38.211, v16.5.0, Mar. 2021.
[15] H. Saarnisaari, A. O. Laiyemo and C. H. M. de Lima, "Random Access Process Analysis of 5G New Radio Based Satellite Links," 2019 IEEE 2nd 5G World Forum (5GWF), 2019, pp. 654-658
[16] T. Chen, W. Wang, R. Ding, G. Seco-Granados, L. You and X. Gao, "Location-Based Timing Advance Estimation for 5G Integrated LEO Satellite Communications," GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1-6
[17] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh and P. Xiao, "Energy-Efficient Random Access for LEO Satellite-Assisted 6G Internet of Remote Things," in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114-5128, 1 April1, 2021
[18] L. Zhen, T. Sun, G. Lu, K. Yu and R. Ding, "Preamble Design and Detection for 5G Enabled Satellite Random Access," in IEEE Access, vol. 8, pp. 49873-49884, 2020
[19] J. Bai and G. Ren, "Adaptive Packet-Length Assisted Random Access Scheme in LEO Satellite Network," in IEEE Access, vol. 7, pp. 68250-68259, 2019
[20] ITU-R Document IMT-2020 Document 5D/3-E “Initial Evaluation Report from ATIS WTSC IMT-2020 Evaluation Group for 3GPP Proponent Submissions of SRIT (DOC. IMT-2020/13) & RIT (DOC. IMT-2020/14)” Nov, 2019
指導教授 許獻聰(Shiann-Tsong Sheu) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明