博碩士論文 107521101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.223.158.226
姓名 胡瀚中(Han-Chung Hu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於毫米波高速通訊四相位鎖相迴路及高線性度正交調變鎖頻迴路之研製
(Quadrature Frequency-Locked Loops with High Linearity I/Q Modulator and Quadrature Phase-Locked Loops for Millimeter-wave High-speed Communications)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-2以後開放)
摘要(中) 在現今的通訊系統中為了尋求高速資料傳輸量的需求,射頻的收發機系統的頻寬比較高優點也展現出來,其中本地振盪源當作系統中升降頻的元件有著重要的地位。而本地振盪源對於相位雜訊的規格是相當高的,當相位雜訊太差將會接連影響到接收的訊號上,會使整體系統性能降低。本論文所使用鎖相迴路可以準確提供穩定的相位頻率,而次諧波注入鎖定的技術可以有效的改善相位雜訊,再搭配無除頻器架構來使整體鎖定頻寬提升,來達到低相位雜訊、低功耗、低抖動量、高頻寬的四相位本地振盪源。
第二章為X頻段多相位鎖相迴路,電路使用台積電0.18 μm互補式金屬氧化物半導體製程設計並實現,鎖相迴路包含變壓器耦合壓控振盪器、相位頻率偵測器、電荷幫浦、迴路濾波器、兩級電流模式除頻器及四級單相位時序除頻器。由於頻率偏移使輸出至除頻器之功率不足,導致鎖相迴路只有一半能正常運作,振盪器量測到的頻率範圍從8到8.67 GHz,鎖頻迴路量測到的頻率範圍為8.2到8.67 GHz,輸出功率為-5 dBm,距載波偏移1 MHz量測的輸出相位雜訊為-102.7 dBc/Hz,直流功耗為44.6 mW。
第三章採用具有低相位雜訊低抖動優勢的鎖頻迴路架構,首先介紹次諧波注入鎖定技術,通過使用變壓器耦合的架構,可使得注入鎖定振盪器擁有更好的特性,且使用堆疊式技術設計振盪核心,提高負電阻的同時不用使用更大的功耗。根據系統模擬相位雜訊線性模型計算方法,可得知當振盪器鎖定頻寬足夠時,整體鎖頻迴路可以得到較低的輸出相位雜訊。其操作頻率從24.7到27.1 GHz,在鎖頻迴路鎖定頻率為25.5 GHz的情況下,距載波偏移1 MHz 之相位雜訊量測到為 -130 dBc/Hz,抖動量積分範圍由1 kHz 到40 MHz為15 fs,振幅誤差和相位誤差分別為0.2 dB及0.1°,電路直流功耗為55.8 mW。
第四章介紹使用次諧波鎖頻迴路之2n-QAM 38-40 GHz正交調變器,使用台積電 90 nm CMOS製程來設計。由於沒有除頻器串列,因此具有較低的整體功耗、相位雜訊與抖動量,且使用次諧波注入鎖定正交鎖頻迴路與反射型調變器,該調變器具有良好線性度所造成好的調變質量與頻寬,且可以應用於各種不同調變方式的性能。由於正交鎖頻迴路的低相位雜訊和正交誤差,因此調製方案可以達到128 QAM。 測得的128-QAM EVM在3%以內。 在3 Gsps的符號速率下,測得的16-QAM在6%以內。整體直流功號為36.9mW。所提出的2n -QAM上調變器具有各種調變的性能,可用於毫米波高級發射機。
摘要(英) In modern communication systems, in order to meet the demand for high-speed data transmission, the advantages of the wide bandwidth of the radio frequency transceiver system have also emerged. The local oscillator source plays an important role in the system. The local oscillator source has very strict requirements for phase noise. If the phase noise is high, the signal-to-noise ratio of the transceiver degrades, as well as system performance. The phase-locked loop proposed in this paper can accurately provide stable frequency, and the injection-locking technology can effectively reduce phase noise. Moreover, a frequency-locked loop with a divider-free feedback can be adopted to widen locking range and reduce dc power consumption, phase noise, and jitter.
A X-band multi-phase phase-locked loop is presented in Chapter 2. The circuit is designed and implemented using TSMC 0.18 μm CMOS process. The phase-locked loop includes a transformer-coupled voltage-controlled oscillator, a phase-frequency detector, a charge pump, a loop filter, two current-mode frequency dividers, and four true-single-phase-clock frequency dividers. Due to the frequency offset of the voltage-controlled oscillator, the power output to the frequency divider is insufficient, resulting in only half frequency range of the phase-locked loop functioning normally. The measured frequency range of the oscillator is from 8 to 8.67 GHz, and the measured frequency range of the phase-locked loop is from 8.2 to 8.67 GHz, and the output power is -5 dBm under the free-running condition. The measured output phase noise at 1 MHz offset is -102.7 dBc/Hz, and the DC power consumption is 44.6 mW.
A sub-harmonically injection-locked frequency-locked loopis presented in Chapter 3, and it features low phase noise and jitter. First, the sub-harmonically injection-locked technology is introduced. By using a transformer-coupled architecture with a stacked boosting, the injection-locked oscillator can have better characteristics up to 28 GHz. The oscillation core can increase the negative resistance without using more power consumption. According to the calculated method of the system simulation phase noise linear model, it can be known that when the oscillator lock bandwidth is sufficient, the overall frequency lock loop can obtain lower output phase noise. Its operating frequency ranges from 24.7 to 27.1 GHz. When the frequency of the frequency-locked loop is 25.5 GHz, the measured phase noise at 1-MHz offset is -130 dBc/Hz, and thethe measured jitter integrated from 1 kHz to 40 MHz is 15 fs, the amplitude error and phase error are 0.2 dB and 0.1°, respectively, and the overall DC power consumption is 55.8 mW.
Chapter 4 introduces a 2n-QAM 38-40 GHz IQ modulator using sub-harmonically injection-locked frequency locked-loop, and the circuit is designed using TSMC 90 nm CMOS process. Due to the divider-less topology, it has lower dc power consumption, phase noise, and jitter. The proposed IQ modulator consists of a quadrature sub-harmonically injection-locked frequency-locked loop and four reflection-type modulators. It can be applied to the performance of various modulation methods due to its high modulation quality and wide bandwidth. Due to the low phase noise and quadrature error of the quadrature frequency-locked loop, the modulation scheme can reach up to 128 QAM. The measured 128-QAM EVM is within 3%. With a symbol rate of 3 GB/s, the measured 16-QAM is within 6%. The overall DC power number is 36.9mW. The proposed 2n-QAM IQ modulator demonstrates good performance and it can be further used in advanced millimeter-wave transmitters.
關鍵字(中) ★ 振盪器
★ 鎖相迴路
★ 鎖頻迴路
★ 次諧波注入鎖定
★ 正交調變器
關鍵字(英) ★ Oscillator
★ Phase-locked Loops
★ Frequency-locked Loops
★ Sub-harmonically injection-locked
★ I/Q modulator
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 論文架構 4
第二章 X頻段四相位鎖相迴路 5
2.1 簡介 5
2.2 電路設計及分析 6
2.2.1 電路之基本架構 6
2.2.2 壓控振盪器[20] 8
2.2.3 除頻器 13
2.2.4 相位頻率偵測器與電荷幫浦 17
2.2.5 迴路濾波器與穩定性分析[51] 21
2.2.6 整合鎖相迴路系統模擬與分析 25
2.3 電路實現及實驗結果與討論 30
2.3.1 鎖相迴路量測除錯 43
2.4 結論 48
第三章 應用Ka頻段次諧波注入鎖定四相位壓控疊接振盪器之鎖頻迴路 50
3.1 簡介 50
3.2 具鎖頻迴路自對準之次諧波注入鎖定壓控振盪器[39] 52
3.2.1 SILQFLL系統模擬[43] 53
3.2.1.1 鎖頻迴路線性模型 54
3.2.1.2 波德圖穩定度分析 58
3.2.1.3 閉迴路暫態分析 61
3.2.1.4 SILQFLL相位雜訊分析 62
3.3 電路設計及分析 65
3.3.1 次諧波注入鎖定四相位壓控疊接振盪器 66
3.3.2 類比式低功耗高速頻率比較器[58] 70
3.3.3 差動雙轉單端放大器 72
3.4 電路實現及實驗結果與討論 74
3.4.1 次諧波注入鎖定鎖頻迴路量測 76
3.4.2 次諧波注入鎖定四相位壓控疊接振盪器除錯 83
3.5 總結 85
第四章 使用次諧波鎖頻迴路之2n-QAM 38-40 GHz正交調變器 87
4.1 簡介 87
4.2 SILQFLL系統模擬[58] 88
4.2.1. 波德圖穩定度模擬與分析 89
4.2.2. 閉迴路暫態分析 91
4.2.3. SILQFLL相位雜訊分析 92
4.3 電路設計及分析 94
4.3.1. 次諧波注入鎖定四相位壓控振盪器[53][54] 95
4.3.2. 類比式低功耗高速頻率比較器[58] 99
4.3.3. 差動雙轉單端放大器 101
4.3.4. 反射型調變器 104
4.4 SILQFLL電路實現及實驗結果與討論 109
4.4.1. 次諧波注入鎖定四相位壓控振盪器量測 111
4.4.2. 次諧波注入鎖定四相位壓控振盪器量測 115
4.4.3. 次諧波注入鎖定四相位壓控振盪器量測 119
4.5 總結 121
第五章 結論 122
參考文獻 123
參考文獻 [1] P. Choi, D. A. Antoniadis, and E. A. Fitzgerald, “Towards Millimeter-Wave Phased Array Circuits and Systems For Small Form Factor and Power Efficient 5G Mobile Devices,” IEEE International Symposium on Phased Array System & Technology , 05 March 2020.
[2] Gholamreza Askari1, Mahmoud Kamarei, and Maziar Hedayati, “UWB Sixport Aanalysis and Design in mm-Wave for 5G Applications” IEEE Progress In Electromagnetics Research Symposium - Spring , 18 January 2018.
[3] H. Wang, K.-Y. Lin, Z.-M. Tsai, L.-H. Lu, H.-C. Lu, C.-H. Wang, J.-H. Tsai, T.-W. Huang, and Y.-C. Lin, “MMICs in the millimeter-wave regime,” IEEE Microw. Magazine, vol.1, pp. 99–117, Jan. 2009.
[4] Enhancements for Very High Throughput in the 60 GHz Band, IEEE Standard 802.11ad, 2012.
[5] Y.-C. Liu, H.-Y. Chang, S.-Y. Huang, and K. Chen, “Design and analysis of CMOS high speed high dynamic range track-and-hold amplifiers,” IEEE Trans. Microw. Theory & Techn., vol. 63, no. 09, pp. 2841–2853, Sept. 2015.
[6] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 659–661, Oct. 2009.
[7] Y.-H., Lin, J.-H. Tsai, Y.-H. Kuo, and T.-W. Huang, “An ultra low-power 24 GHz phase-lock-loop with low phase-noise VCO embedded in 0.18 μm CMOS process,” 2011 Asia Pacific Microw. Conf. Proc., Dec. 2011, pp. 1630–1633.
[8] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 µm COMS technology,” 2012 Asia Pacific Microw. Conf. Proc., Dec. 2012, pp. 643–645.
[9] A. Li, S. Zheng, J. Yin, X. Luo, and H. C. Luong, “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1785–1799, Aug. 2014.
[10] G.-Y. Chen, H.-Y. Chang, S.-H. Weng, C.-C. Shen, Y.-L. Yeh, J.-S. Fu, and Y.-M. Hsin, “Design and analysis of a Ka-band monolithic high-efficiency frequency quadrupler using GaAs HBT–HEMT common-base/common-source balanced topology”, IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3674–3689, Oct. 2013.
[11] K.-Y. Lin, J.-Y. Huang, and S.-C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308–310, May 2009.
[12] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, and H. Zirath, “Broadband Gm-boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Techn. , vol. 59, no. 11, pp. 2953–2960, Nov. 2011.
[13] Y. Chen, Y. Pei, D. M. W. and Leenaerts, “A dual-band LO generation system using a 40GHz VCO with a phase noise of -106.8 dBc/Hz at 1-MHz,” in 2013 IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2013, pp. 203–206.
[14] Y.-L. Yeh and H.-Y. Chang, “A W-band wide locking range and low dc power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 860–870, Feb. 2013.
[15] Wei Deng, Zheng Song, Ruichang Ma, Jianfu Lin, Yutian Li, Jialiang Ye,Shangcheng Kong, Sanming Hu , Haikun Jia and Baoyong Chi, “An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 55, no. 8, pp. 2027-2040, Aug. 2020.
[16] S. Huang Shuigen, M. Lin, R. Wang, Z. Chen, and Y. Dong, “A 400MHz single-chip CMOS transceiver for long range high definition video transmission in UAV application,” Chinese Journal of Electronics vol.29, No.3, pp. 554-562, May 2020.
[17] Yun Wang, Rui Wu, Jian Pang, Dongwon You, Ashbir Aviat Fadila, Rattanan Saengchan, Xi Fu, Daiki Matsumoto, Takeshi Nakamura, Ryo Kubozoe, Masaru Kawabuchi, Bangan Liu, Haosheng Zhang, Junjun Qiu, Hanli Liu, Naoki Oshima, Keiichi Motoi, Shinichi Hori, Kazuaki Kunihiro, Tomoya Kaneko, Atsushi Shirane, and Kenichi Okada “A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249-1268, May 2020.
[18] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[19] Akshay Visweswaran, Robert Bogdan Staszewski, and John R. Long, “A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014
[20] C.-H. Lin, Y.-Ta Lu, H.-Y. Liao, S. Chen, Alvin L. S. Loke, and T.-J. Yeh” A 0.011-mm2 27.5-GHz VCO with Transformer-Coupled Bandpass Filter Achieving -191 dBc/Hz FoM in 16-nm FinFET CMOS ,” IEEE IMS ,August 2020.
[21] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[22] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[23] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[24] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[25] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[26] 林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國 101 年。
[27] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[28] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10- kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[29] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[30] Jeng-Han Tsai, Chia-Hsiang Chao, and Hung-Da Shih, “A X-band Fully Integrated CMOS Frequency Synthesizer,” in Proc. Asia-Pacific Microw. Con., Dec. 2012.
[31] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國 105 年。
[32] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” IEEE Communications and Networking in China (CHINACOM), pp. 276–280, Aug. 2013.
[33] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[34] Jeng-Han Tsai, Chin-Yi Hsu, and Chia-Hsiang Chao, “An X-Band 9.75/10.6 GHz Low-Power Phase-Locked Loop using 0.18-μm CMOS Technology,” Proceedings of the 10th European Microwave Integrated Circuits Conference, Sept. 2015.
[35] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A Dual-mode Signal Generator using PLL for X-band Radar Sensor Applications,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sept. 2017.
[36] Hamed Alsuraisry, Chun-Hin Yim, Jen-Hao Cheng, Jeng-Han Tsai, Tian-Wei Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in Proc. Asia-Pacific Microw. Con., Dec. 2015.
[37] F. Liang and K. J. Hsiao, “An injection locked ring PLL with self aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[38] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[39] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection locked oscillator with a highly digital tuning Loop,” IEEE J. Solid State Circuits, vol. 44, pp. 1391-1400, May 2009.
[40] I T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh, and H. H. Hsieh, “A divider less sub-harmonically injection-locked PLL with self-adjusted injection timing” IEEE Int. Solid State Circuits Conf, Tech. Dig., pp. 414-415, Feb. 2013.
[41] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[42] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTT S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[43] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[44] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[45] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[46] D. Dunwell and A. C. Carusone, “Modeling oscillator injection locking using the phase domain response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2823–2833, Nov. 2013.
[47] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback,” 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100–103.
[48] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage- ontrolled oscillator with FLL self-alignment technique,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.
[49] H.-Y. Chang, C.-C. Chan, I. Y.-E. Shen, Y.-L. Yeh, S.-Y. Huang, "Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique", IEEE Trans. Microw. Theory Techn., vol. 64, pp. 4632–4645, 2016.
[50] H.-Y. Chang, C.-C. Chan, S.-M. Li, H.-N. Yeh, I. Y.-E. Shen, and G.-L. Huang, “Design and analysis of CMOS low phase noise low quadrature error V-band sub-harmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 06, pp. 2851–2866, June 2018.
[51] D. Shin, S. Raman and K. J. Koh, “A mixed-mode injection frequency-locked loop for self-calibration of injection locking range and phase noise in 0.13μm CMOS,” 2016 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 50–51.
[52] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324–325.
[53] H.-S. Yang, I. Y.-E. Shen, and H.-Y. Chang, “A K-band CMOS low-phase-noise sub-harmonically injection-locked QVCO with divider-less frequency-tracking loop,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, June 2019, pp. 2–7.
[54] J. Zhang, Y. Peng, H. Liu, Yunqiu, C. Zhao and K. Kang “A 21.7-to-41.7-GHz injection-locked LO generation with a narrowband low-frequency input for multiband 5G communications,” IEEE Trans. Microw. Theory Techn., Early Access Article, 2019.
[55] 李哲瑋,CMOS多相位鎖相迴路與低相位雜訊低抖動次諧波注入鎖定四相位鎖頻迴路,國立中央大學電機工程研究所碩士論文,民國109年。
[56] Xuqiang Zheng, Fangxu Lv, Lei Zhou, Danyu Wu, Jin Wu, Chun Zhang, Woogeun Rhee and Xinyu Liu, “Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.1651-1664, June. 2020.
[57] 李昇洺,V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[58] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “19.2 A PVT robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequencytracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324-325.
[59] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, Y.-C. Tsai, and C.-H. Chen, “An ultra compact and broadband 15–75 GHz BPSK modulator using 0.13-µm CMOS process,” in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, Jun. 2005, pp. 41–44.
[60] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, " 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100-103.
[61] C. Azcona, B. Calvo, S. Celma, N. Medrano” Low-Voltage Low-Power CMOS Rail-to-Rail V-I Converters” in European Conference on Circuit Theory and Design (ECCTD),2011
[62] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp.20–30, Jan. 2006.
[63] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, “A 30–65 GHz reduced-size modulator with low LO power using sub- harmonic pumping in 90-nm CMOS technology,” in Proc. RFIC Symp., Jun. 2012, pp. 491–494.
[64] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “1024- QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974–3985, Nov. 2013.
[65] C. Chen, J. Lin and H. Wang, “A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer,“ in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822- 824, Sept. 2018.
[66] T. Tang, C. Chen, H. Lin, J. Lin and H. Wang” A 38-GHz Sub-Harmonic I/Q Modulator Using LO Frequency Quadrupler in 65-nm CMOS” in IEEE Asia-Pacific Microwave Conference, pp. 723- 725, Dec. 2019
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2021-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明