博碩士論文 108521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.1.196
姓名 饒清寧(Ching-Ning Jao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 功率型運算放大器積體電路設計
(Integrated Circuit Design of Power Operational Amplifier)
相關論文
★ 化合物半導體元件設計零電壓切換諧振電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著製程的演進和發展,高速類比電路的需求是日益增高。例如: 高速的類比數位轉換器(ADC)、數位類比轉換器(DAC)、高解析度影像傳輸設備…等等,而其中高頻寬、高迴轉率的運算放大器就扮演著非常重要的角色。
本論文提出了三種架構,第一種架構是使用GaN製程實現的高功率線性穩壓器,能將100V穩定轉換成5.5V,以提供穩定的電源供應電壓給另外兩種架構。另兩種架構為用於放大高速數位類比轉換器(DAC)之輸出訊號以驅動高負載的類比電路設計,為一高頻寬、高迴轉率、低輸出阻抗的運算放大器。其中架構主要分為兩種: 一是典型的電壓回授互補式雙級放大器(簡稱G1)具迴轉率補償之驅動電路,其開迴路增益可達69dB,單位增益頻寬183M Hz,其靜態功耗可達6.3mW。另一是電流回授之高頻寬、高迴轉率、低輸出阻抗的轉阻放大器(簡稱G2),其開迴路增益可達50dB,迴轉率在輸出峰對鋒值VPP=2.5V及負載0.9nF//50ohm時為582V/μs,單位增益頻寬363M Hz,其輸出阻抗可達0.1ohm (@10 M Hz),靜態功耗1.25W。本論文提出之架構以積體電路實現,透過 0.18um CMOS 製程使用,單供應電壓為5.5V,負載阻抗為0.9nF//50ohm,測試訊號頻率在10M Hz時,其總諧波失真(THD)為2.4%。在30M Hz時為8%。
摘要(英) In recent years, with the evolution and development of manufacturing processes, the demand for high-speed analog circuits is increasing. For example: high-speed analog-to-digital converters (ADC), digital-to-analog converters (DAC), high-resolution image transmission equipment...etc. Among them, high-bandwidth, high-slew rate operational amplifiers play a very important role. This paper proposes three architectures. The first architecture is a high-power linear regulator implemented using a GaN process, which can stably convert 100V to 5.5V to provide a stable power supply voltage to the other two architectures. The other two architectures are analog circuits designed to amplify the output signal of a high-speed digital-to-analog converter (DAC) to drive high loads. They are an operational amplifier with high bandwidth, high slew rate, and low output impedance. The architecture is mainly divided into two types: The first is a typical voltage feedback complementary two-stage amplifier (G1) with slew rate compensation drive circuit, its open loop gain can reach 69dB, unity gain bandwidth 183M Hz, its static power The power consumption can reach 6.3mW. The other is a current feedback transimpedance amplifier (G2) with high bandwidth, high slew rate, and low output impedance. Its open-loop gain can reach 50dB. The slew rate is at the output peak-to-front value VPP=2.5V and load 0.9nF//50ohm is 582V/μs, unity gain bandwidth is 325M Hz, its output impedance can reach 0.1ohm (@10 M Hz), and static power consumption is 1.25W. The architecture proposed in this paper is implemented by an integrated circuit, used through a 0.18um CMOS process, with a single supply voltage of 5.5V, a load impedance of 0.9nF//50ohm, and the total harmonic distortion (THD) when the test signal frequency is 10M Hz. Is 2.4%. 8% at 30M Hz.
關鍵字(中) ★ 功率型運算放大器
★ 高速運算放大器
★ 高迴轉率
★ 高頻寬
★ 大輸出電流
關鍵字(英) ★ Power operational amplifier
★ High speed operational amplifier
★ High slew rate
★ High bandwidth
★ Large output current
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
一、緒論 1
1-1 研究背景 1
1-2文獻回顧 2
1-3論文大綱 7
二、運算放大器電路架構及分析 8
2-1運算放大器 8
2-2電壓回授運算放大器 8
2-3電流回授運算放大器 10
2-4電壓回授與電流回授之比較 12
2-4-1頻寬 13
2-4-2失真率 13
2-4-3迴轉率 14
2-4-4 輸出擺幅 14
2-4-5 輸入阻抗 14
2-4-6 輸出阻抗 15
2-4-7 輸入誤差 15
2-5 系統應用 15
三、電路實現的設計與模擬 17
3-1高功率線性穩壓器 17
3-1-1運作原理 17
3-1-2電路實現 18
3-1-3模擬結果 19
3-1-4電路佈局與規格整理 22
3-2互補式迴轉率補償雙級放大器 23
3-2-1運作原理 23
3-2-2電路實現 25
3-2-3前模擬(Pre-simulation)結果 26
3-2-4後模擬(Post-simulation)結果 34
3-2-5電路佈局(Layout)及規格整理 39
3-3高速電流回授運算放大器 40
3-3-1運作原理 41
3-3-2電路實現 44
3-3-3前模擬(Pre-simulation)結果 46
3-3-4後模擬(Post-simulation)結果 53
3-3-5電路佈局(Layout)及規格整理 59
3-4系統應用及模擬 60
3-4-1系統模擬 61
3-4-2高斯訊號(Gaussian pulse)模擬 66
四、晶片量測 71
4-1 GaN高功率線性穩壓器量測 71
4-2模擬與量測之比較 78
五、結論 80
參考文獻 81
參考文獻 [ 1 ] 硬件三人行, 從零學運放—01運算放大器的參數。2017年4月20日,取自https://kknews.cc/digital/85yaggn.html
[ 2 ] Behzad Razavi, “Design Of Analog Cmos Integrated Circuit,”Second Edition
[ 3 ] Behzad Razavi, 類比CMOS積體電路設計,李泰成譯,修訂版,東華書局,台北市,民國103年。
[ 4 ] 羅姆半導體:迴轉率介紹說明。取自https://www.rohm.com.tw/electronics-basics /opamps/op_what5。
[ 5 ] TI,” A Current Feedback Op-Amp Circuit Collection”,取自https://www.ti.com/lit/pdf/sloa066
[ 6 ] T. Saalfeld, A. Meyer, E. S. Bocholt, R. Wunderlich and S. Heinen, "Analysis of Gain and Bandwidth Limitations of Operational Amplifiers in Sigma-Delta Modulators," 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2018, pp. 125-128, doi: 10.1109/PRIME.2018.8430341.
[ 7 ] TI,” Voltage Feedback vs. Current Feedback Op Amps”,取自https://www.ti.com/lit/pdf/sloa066
[ 8 ] M. A. G. Lorenzo, A. A. S. Manzano, M. T. A. Gusad, J. R. F. Hizon and M. D. Rosales, "Design and implementation of CMOS rail-to-rail operational amplifiers," 2007 International Symposium on Communications and Information Technologies, 2007, pp. 61-66, doi: 10.1109/ISCIT.2007.4391985.
[ 9 ] C. Yadav and S. Prasad, "Low voltage low power sub-threshold operational amplifier in 180nm CMOS," 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), 2017, pp. 35-38, doi: 10.1109/SSPS.2017.8071560.
[ 10 ] C. Guo, S. Zhu, J. Hu, J. Zou, H. Sun and X. Lv, "A low voltage CMOS rail-to-rail operational amplifier based on flipped differential pairs," 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2011, pp. 217-220, doi: 10.1109/MAPE.2011.6156191.
[ 11 ] J. Kai, Y. Ningmei and Q. Xing, "A 168 dB high gain folded cascode operational amplifier for Delta-Sigma ADC," 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019, pp. 2228-2231, doi: 10.1109/ICIEA.2019.8834023.
[ 12 ] Ka Nang Leung, P. K. T. Mok, Wing-Hung Ki and J. K. O. Sin, "Three-stage large capacitive load amplifier with damping-factor-control frequency compensation," in IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 221-230, Feb. 2000, doi: 10.1109/4.823447.
[ 13 ] Hoi Lee and P. K. T. Mok, "Active-feedback frequency compensation for low-power multi-stage amplifiers," Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285), 2002, pp. 325-328, doi: 10.1109/CICC.2002.1012831.
[ 14 ] P. -Y. Kuo and S. -D. Tsai, "An Enhanced Scheme of Multi-Stage Amplifier With High-Speed High-Gain Blocks and Recycling Frequency Cascode Circuitry to Improve Gain-Bandwidth and Slew Rate," in IEEE Access, vol. 7, pp. 130820-130829, 2019, doi: 10.1109/ACCESS.2019.2940560.
[ 15 ] 蔡昇達。「高增益頻寬和高迴轉率多級放大器設計」。碩士論文,國立雲林科技大學電子工程系,2017。<https://hdl.handle.net/11296/g456p7>。
[ 16 ] F. Ziraksaz and A. Nabavi, "Design of a Linear Class AB Amplifier with 55dB Gain, 890MHz Bandwidth and Low Output Impedance for Envelope Tracking Supply Modulator," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 2019, pp. 253-257, doi: 10.1109/IranianCEE.2019.8786603.
[ 17 ] K.C Lee,” An Integrated Operational Transconductance Amplifier Design for Doppler Ultrasound System”
[ 18 ] I. A. Koullias, "A wideband low-offset current-feedback op amp design," Proceedings of the Bipolar Circuits and Technology Meeting, 1989, pp. 120-123, doi: 10.1109/BIPOL.1989.69472.
[ 19 ] TI THS3001 Datasheet,” 420-MHz HIGH-SPEED CURRENT-FEEDBACK AMPLIFIER”,取自https://www.ti.com/lit/gpn/THS3001
[ 20 ] S. Selvanayagam and F. J. Lidgey, "Wide bandwidth CMOS current feedback op amp for inverting amplifier applications," IEE Colloquium Wideband Circuits, Modelling and Techniques, 1996, pp. 7/1-7/4, doi: 10.1049/ic:19960707.
指導教授 陳竹一 夏勤(Jwu-E Chen Chin Hsia) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明