博碩士論文 108521014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.1.196
姓名 廖彥旻(Yan-Min Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於光達系統擁有單光子偵測能力和高飽和電流特性的雙層累增層設計累增崩潰光二極體
(High-Performances Dual M-Layers Avalanche Photodiodes from Single-Photon Detection to High Saturation Output Power for Lidar application)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去的幾年中,光學雷達已成為許多不同領域的關鍵技術,例如:機器人、醫療應用以及自動駕駛等等。而目前最常使用的光達系統主要有兩種技術,一種是飛行時間(ToF)光學雷達,另一種則為調頻連續波(FMCW)光學雷達。在此篇論文中,我們展示了一種雙層累增層 In0.52Al0.48As 的累增崩潰光二極體,其在蓋格模式與線性模式操作下優良的特性,讓我們的累增崩潰光二極體可同時應用於飛行時間(ToF)光學雷達與調頻連續波(FMCW)光學雷達。
我們的累增崩潰光二極體結構中擁有雙層累增層的設計,其有效地將累增崩潰過程侷限在一個薄的高電場區域,而非讓整個厚的累增層發生崩潰。因此,與直接縮小累增層厚度相比,它最大限度地減少了空間電荷效應,同時避免了穿隧電流的增加,並且將特殊設計的蝕刻平台型結構與這種雙層累增層結構結合,我們可以很好地抑制邊緣崩潰。
透過將元件操作在蓋格模式,我們最終實現了在溫度 200K 與 10kHz 的閘控頻率下達到 61.4%的單光子偵測效率與 65ps 的時基誤差,並且有效避免後脈衝效應所帶來的影響。同時透過將元件操作在線性模式(0.9Vbr),元件亦可擁有高增益頻寬積(450GHz)和高飽和電流 (>12mA)的性能,此外,在高輸出光電流(7 mA)下具有 6.3 A/W的高響應度與+6.95 dBm 的高光輸出功率。我們的累增崩潰光二極體元件展示出優秀的性能,其為未來光學雷達系統的接收器開闢了新的途徑。
摘要(英) Light detection and ranging technology(Lidar) has become a crucial technology in many different areas including robots, medical applications as well as in autonomous vehicle over the past few years. The two most used lidar techniques which meet these requirements, involve the pulsed beam based on the time-of-flight(ToF) principle and
frequency-modulated continuous wave (FMCW) approaches. In this work, we demonstrate a dual multiplication layers In0.52Al0.48As based avalanche photodiode, which is desired for ToF lidar and FMCW lidar application due to its high performances in both Geiger mode and linear mode operations.
The dual M-layer design in our APD structure effectively constrains the multiplication process to a thin high-field region rather than the whole thick M-layer. It thus minimizes the space charge effect and avoids increasing the tunneling dark current for the case of directly shrinking M-layer thickness. By combining the specially designed mesa shape with this dual M-layer structure, the edge breakdown can be well suppressed.
We eventually achieve a single photon detection efficiency of 61.4% and neat temporal characteristic of 65ps without the involvement of afterpulsing at the gating frequency of 10 kHz for 200 K in Geiger mode operation. On the other hand, we can also achieve high gain-bandwidth product (450GHz) and high saturation current (>12mA) under linear mode (0.9 Vbr) operation. The corresponding photo-generated RF power from our APD with a 6.3 A/W responsivity can be as high as +6.95 dBm at a high (7 mA) output photocurrent. The demonstrated APD opens new possibilities in the receiver-end of next generation lidar.
關鍵字(中) ★ 累增崩潰光二極體
★ 單光子累增崩潰光二極體
★ 光偵測效率
★ 時基誤差
關鍵字(英) ★ Avalanche photodiodes
★ Single photon avalanche diode
★ Photon detection efficiency
★ Timing jitter
論文目次 Abstract I
摘要 III
致謝 VII
目錄 VIIII
圖目錄 XII
表目錄 XVIIII
第一章 序論 1
§1-1 光達系統 1
§1-2 同調連續波光波長調變(FMCW)技術的光達系統 4
§1-3 單光子偵測器 6
§1-4 傳統的累增崩潰光二極體 7
§1-5 Si based 單光子累增崩潰光二極體(SPAD)操作限制 10
§1-6 InP based單光子累增崩潰光二極體(SPAD) 14
§1-7 InAlAs based單光子累增崩潰光二極體(SPAD) 16
§1-8 論文動機與架構 22
第二章 累增崩潰光二極體之設計與製作 23
§2-1 累增崩潰光二極體之設計與模擬 23
§2-2 累增崩潰光二極體之製程 33
I. 試片準備: 34
II. 第一個圓柱(First Mesa)製作:(第一道光罩) 35
III. 第二個圓柱(Second Mesa)製作:(第二道光罩) 36
IV. 第三個圓柱(Third Mesa)製作 : (第三道光罩) 38
V. 絕緣層(Isolation)製作 : (第四道光罩) 39
VI. 硫化(Sulfur process)與P型金屬製程(P metal): 40
VII. N型金屬製程(N metal): 42
VIII. 聚醯亞胺(Polyimide,簡稱PI)鈍化層製程: 44
IX.金屬接線(Pad)製程: 46
X.抗反射薄膜製程: 48
第三章 累增崩潰光檢測器之量測與結果討論 50
§3-1 DC量測系統之架設 50
§3-2 光電流量測結果 51
§3-3 頻率響應量測系統之架設 53
§3-4 頻率響應量測結果 54
§3-5 自相外差頻率調變連續波(FMCW)光達系統架設 57
§3-6 自相外差頻率調變連續波(FMCW)光達系統量測結果 59
I. 系統之信噪比(SNR)量測結果 59
II. 累增崩潰光二極體之飽和電流特性 61
III. 自外差系統(self-heterodyne system)輸出光訊號在時域之波形. 62
IV. 累增崩潰光二極體之飽和輸出功率特性 65
V. 自相外差頻率調變連續波(FMCW)光達系統中捕捉之影像66
§3-7 單光子偵測量測架設 68
I. 截止電路 69
II. 變溫IV量測系統架設 74
III. 暗計數量測系統架設 75
IV. 光計數率量測系統架設 76
V. 時基誤差量測系統架設 79
VI. 後脈衝量測系統架設 80
§3-8 單光子偵測量測結果與探討 82
I. 變溫IV量測結果 82
II. 暗計數量測 84
III. 後脈衝量測結果 86
IV. 光計數量測結果 90
V. 時基誤差(Timing jitter)量測結果 95
VI. 單光子累增崩潰光二極體(SPAD)數據比較 99
第四章 結論與未來研究方向 100
§4-1 結論 100
§4-2 未來研究方向 101
參考文獻 103
參考文獻 [1] https://kknews.cc/tech/b8ezjjm.html
[2] https://www.novuslight.com/fmcw-the-future-of-lidar_N9691.html
[3] https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars
[4] M. Nada, Y. Yamada and H. Matsuzaki, "A High-Linearity Avalanche Photodiodes With a Dual-Carrier Injection Structure," IEEE Photonics Technology Letters, vol. 29, no. 21, pp. 1828-1831, 1 Nov., 2017.
[5] P. Runge, G. Zhou, T. Beckerwerth, F. Ganzer, S. Keyvaninia, S. Seifert,W. Ebert, S. Mutschall, A. Seeger, and M. Schell, "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-7, March-April, 2018.
[6] https://www.ques10.com/p/19228/explain-the-basic-principle-of-operation-of-phot-1/
[7] S. Cova, M. Ghioni, F. Zappa, A. Gulinatti, I. Rech and A. Tosi, "Single photon counting detectors in action: Retrospect and prospect," 2010 23rd Annual Meeting of the IEEE Photonics Society, Nov., 2010.
[8] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, 2001.
[9] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three- Dimensional Imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350, 2002.
[10] Soon-Gyu Choi, Jung-hwan Shin, Sang-Gu Kang, Jung-Ho Hong, Yong-Joon Kwon, Eung-Cheol Kang and Chang-Jae Lee, “3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation,” Journal of the Korean Optical Society, vol. 24, no. 4, pp. 176–183, Aug., 2013.
[11] M. Liu et al. ,"High-Performance InGaAs/InP Single-Photon Avalanche Photodiode," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 887-894, July-August, 2007.
[12] Daniel Benedikovic, Léopold Virot, Guy Aubin, Jean-Michel Hartmann, Farah Amar, Xavier Le Roux, Carlos Alonso-Ramos, Éric Cassan, Delphine Marris-Morini, Jean-Marc Fédéli, Frédéric Boeuf, Bertrand Szelag and Laurent Vivien, "Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers, " Nanophotonics, vol. 10, no. 3, 2021.
[13] Z. Lu, Y. Kang, C. Hu, Q. Zhou, H. Liu and J. C. Campbell, "Geiger-Mode Operation of Ge-on-Si Avalanche Photodiodes," IEEE Journal of Quantum Electronics, vol. 47, no. 5, pp. 731-735, May,2011.
[14] J. Kirdoda et al., "Geiger Mode Ge-on-Si Single-Photon Avalanche Diode Detectors," 2019 IEEE 2nd British and Irish Conference on Optics and Photonics, pp. 1-4, Dec.,2019.
[15] G. Intermite et al., "Design and performance of a prototype mesa-geometry Ge-on-Si single-photon avalanche diode detector at 1310 nm and 1550 nm wavelengths," 10th International Conference on Group IV Photonics, pp. 132-133, Aug.,2013.
[16] Francesco Ceccarelli, Giulia Acconcia, Angelo Gulinatti, Massimo Ghioni, Ivan Rech, Roberto Osellame, "Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications, "Advanced Quantum Technologies, vol. 4, issue 2, December, 2020.
[17] S. Pellegrini et al., "Design and performance of an InGaAs-InP single-photon avalanche diode detector," IEEE Journal of Quantum Electronics, vol. 42, no. 4, pp. 397-403, April, 2006.
[18] David A. Ramirez, Majeed M. Hayat, Gauri Karve, Joe C. Campbell, Sergio N. Torres, Bahaa E.A. Saleh and Malvin Carl Teich, " Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes, "IEEE Journal of Quantum Electronics, vol. 42, pp. 137 – 145, March, 2006.
[19] Mohammad A. Saleh, Majeed M. Hayat, Paul P. Sotirelis, Archie L. Holmes, Joe C. Campbell, Bahaa E. A. Saleh and Malvin Carl Teich, ”Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes,” IEEE Transactions on Electron Devices, vol. 48, pp. 2722-2731, Dec., 2001.
[20] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InP/
[21] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InAlAs/
[22] Lee, S., Winslow, M., Grein, C.H. et al. , "Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate, " Scientific Reports, vol. 10, pp. 16735 , Oct., 2020.
[23] Jishen Zhang, Haibo Wang, Gong Zhang, Kian Hua Tan, Satrio Wicaksono, Haiwen Xu, Chao Wang, Yue Chen, Yan Liang, Charles Ci Wen Lim, Soon-Fatt Yoon, and Xiao Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Optics Letters, vol. 46, pp. 2670-2673, Jun.,2021.
[24] Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng, "1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature," Optics Express, vol. 22, pp. 22608-22615 , Sep., 2014.
[25] F. Acerbi, M. Anti, A. Tosi and F. Zappa, "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode," IEEE Photonics Journal, vol. 5, no. 2, pp. 6800209-6800209, April ,2013.
[26] S. Wang et al., "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photonics Technology Letters, vol. 13, no. 12, pp. 1346-1348, Dec., 2001.
[27] I. Vurgaftmana and J. R. Meyer. "Band parameters for III–V compoundsemiconductors and their alloys," Journal of Applied Physics, vol. 89, pp.5815-5875, June ,2001.
[28] Cao, S., Zhao, Y., ur Rehman, S. et al., " Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes, " Nanoscale Research Letters, vol. 13, pp. 158 , May, 2018.
[29] http://www.film-top1.com/news-info.asp?id=279
[30] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability,” IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.

[31] M. Nada, Y. Yamada, and H. Matsuzaki, “Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Further Ethernet Systems,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, pp. 3800811, March/April, 2018.
[32] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug ,2004.
[33] A. Hirata, M. Harada and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals," Journal of Lightwave Technology, vol. 21, no. 10, pp. 2145-2153, Oct., 2003.
[34] A. Gallivanoni, I. Rech and M. Ghioni, "Progress in Quenching Circuits for Single Photon Avalanche Diodes," IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3815-3826, Dec., 2010.
[35] Jack Jia-Sheng Huang, H. S. Chang, Yu-Heng Jan, C. J. Ni, H. S. Chen, Emin Chou, "Temperature Dependence Study of Mesa-Type InGaAs/InAlAs Avalanche Photodiode Characteristics," Advances in OptoElectronics, vol. 2017, pp. 1-5, January, 2017.
[36] Gauri Vibhakar Karve, "Avalanche Photodiodes As Single Photon Detectors," The University of Texas at Austin, PhD Dissertation, May, 2005.
[37] Yingjie Ma et al., "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors," Optics Express, vol. 24, pp. 7823-7834, April, 2016.
[38] S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE Journal of Quantum Electronics, vol. 42, no. 4, pp. 397–403, April, 2006.
[39] Yi-Shan Lee, Yan-Min Liao, Ping-Li Wu, Chi-En Chen, Yu-Jie Teng, Yu-Ying Hung, Jin-Wei Shi, "In0.52Al0.48As Based Single Photon Avalanche Diodes with Stepped E-field in Multiplication Layers and High Efficiency Beyond 60 %," (submitted to IEEE Journal of Selected Topics in Quantum Electronics)


[40] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, C. C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Optics Letters , vol. 46, pp. 2670-2673, Jun., 2021.
[41] L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” Journal of Applied Physics, vol. 117, pp.083109, Feb., 2015.
[42] Y. Q. Fang, W. Chen, T. H. Ao, C. Liu, L. Wang, X. J. Gao, J. Zhang, and J. W. Pan, “InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm,” Review of Scientific Instruments, vol. 91, pp. 083102 , Aug., 2020.
[43] G. Karve, S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, W. P. Risk, G. S. Kinsey, J. C. Boisvert, T.D. Isshiki, and R. Sudharsanan, “Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,” Applied Physics Letters, vol. 86, February, 2005.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明