博碩士論文 108521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.149.25.73
姓名 黃彥餘(YEN-YU HUANG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用電鍍銅基板的誘發應力於高速垂直型共振腔面射型雷射的相對噪聲強度之抑制
(The Suppression of Relative Intensity Noise in High-Speed VCSELs by Using Strain Induced by Electroplating Copper Substrate)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 850nm波段高速垂直共振腔面射型雷射(Vertical-Cavity-Suface-Emitting-Laser),作為多模光纖通訊通道的光源已是多種應用的主流,像是超短距離數據通訊、超級電腦、HDMI2.1或DisplayPort2.0纜線等等。為了提升上述系統的數據速度,脈衝幅度調製(pulse amplitude modulation)、正交頻率多工(orthogonal frequency division multiplexing)、前饋均衡(feed forward equalization)等複雜調變技術,可以解決850nmVCSEL速度上的限制。然而,使用上述複雜調變技術讓VCSEL中的相對強度噪音(RIN)更為重要。因此,同時擁有高速調製與低相對強度噪音的VCSEL設計,對於下一代光互聯系統而言非常重要。
低相對強度噪音的VCSEL,可以透過增加頂部P型分布式布拉格反射鏡來實現,但這會讓腔體內部的光子生命時間(p)增加,導致頻寬(E-O)和輸出功率劣化。控制VCSEL的極化是另一種有效率降低相對強度噪音的方法,在許多發表單極化VCSEL的技術中,像是將磊晶長在方向偏移的砷化鎵基板上、在DBR層做橢圓表面蝕刻,其中最有效的方法是在頂部DBR反射鏡做線性光柵,此技術可以得到大且穩定的正交極化抑制比(OPSR>20 dB)。儘管如此,線性光柵會誘發額外腔內損耗導致p下降,影響相對強度噪音(RIN)的表現,而我們發現了另一種方法:電鍍銅基板,可以在不減少p的情況下改善RIN。
參考了這麼多控制極化的方法,最初我們設計了圓形凸台結構(磊晶長在方向偏移的砷化鎵基板上),得到微小極化差異(~6dB)且應證晶片在<011->方向有比較強的極化。為了取得更大的極化差異,我們也做了矩形凸台結構(磊晶長在方向偏移的砷化鎵基板上),並觀察到了比較大的極化差異(10dB)。我們進一步在它背面電鍍銅基板利用誘發應力提升各項表現,成效包括了在不犧牲臨限電流與輸出功率情況下使光譜線寬變窄、RIN降低6dB、更大的極化差異(15dB)、更好品質的眼圖(25Gbit/sec)。
由於頻譜不理想,我們使用鋅擴散(圓與橢圓)來改善我們的頻譜,結果橢圓鋅擴散因長邊較長較少損耗無法達成單模,而圓形鋅擴散不僅達到了單模單極化(正交極化斥拒比: > 20 dB)且有著世界紀錄高的單模功率(10 mW; 單模斥拒比: >15 dB)和亮度(5.89MW(cm-2sr-1))。並且能夠在25 Gbit/sec 操作。
摘要(英) Using high-speed vertical-cavity surface-emitting lasers (VCSELs) at around 850 nm wavelength regime as the light source in multi-mode fiber (MMF) based communication channel has become the main stream for several applications, such as very short-reach data communication, high-performance-computing (HPC) system, and HDMI 2.1 or DisplayPort 2.0 cables. In order to boost up the data rate per channel in the above-mentioned systems,complex modulation/de-modulation techniques, such as pulse-amplitude modulation(PAM),orthogonal frequency-division multiplexing (OFDM) , and feed forward equalization (FFE) ,have been demonstrated to alleviate the speed bottleneck for an 850 nm VCSEL under direct modulation. Nevertheless, the use of the afore-mentioned techniques to boost the data rate makes the relative intensity noise (RIN) in the VCSEL even more critical. The designing of VCSELs which simultaneously offer high modulation-speeds and very low RIN is thus very important to meet the requirements of the next-generation optical interconnect system. The low RIN performance in VCSEL can be realized by increasing the pair numbers of top p-type distributed Bragg reflector (DBR) mirror, which leads to the increase of photon lifetime (p) inside cavity. However, the larger p usually decreases both the net E-O bandwidths and slope efficiency of VCSEL . By properly controlling the polarization states of VCSEL output is one of the other effective ways to reduce RIN. Among all the reported single-polarized VCSEL techniques, such as epi-layers grown on misoriented GaAs substrate and elliptical surface etching on DBR layers, implementing the linear grating on the top DBR mirror is one of the most effective way to have a large and stable orthogonal polarization suppression ratio (>20 dB) over the whole range of bias current . Nevertheless, the grating induced additional intra-cavity loss may reduce p and degrades its RIN performance. In this work, we demonstrate a new technology :electroplating copper substrate to improve RIN and attain single polarized output without reducing p.
In this work, firstly we implemented the VCESLs with circular mesa, which was grown on the misoriented GaAs substrate. We achieved a small polarization difference between 011- and 011 orientation as 6 dB.. In order to obtain a larger Orthogonal polarization suppression ratio (OPSR) , we demonstrated rectangular mesa grown on the same misoriented GaAs substrate. Using this approach, we observed a larger PSR at nearly 10dB. In addition, by electroplating with the copper substrate to induce strain in our device, the further improvements in OPSR without sacrificing their threshold currents and slope efficiencycan be achieved.With this approach, we observe linewidth narrowing in the output optical spectra and the significant reduction of RIN(~6dB) simultaneously over a wide frequency range. Moreover, flat electrical-to-optical (E-O) frequency response and improved 25Gbits/sec transmission performance with low jitter than those of references without electroplatingcan be observed . Whereas, the far-field pattern (FFP) obtained using our rectangular mesa structure shows highly multimode. In order to further improve the FFP , we use Zn diffusion (circular and elliptical shape) technique in the circular mesa structure. The elliptical shaped Zn diffused circular mesa has less loss in the longer side as a result of which no significant improvement in the modes were observed. Nevertheless,using circular shaped Zn diffused circular mesa structure, we can simultaneously achieve highly single mode, single polarize (OPSR>20dB) with a record high single-mode power (10mW, SMSR>15dB), high brightness over 5.89mW(cm-2sr-1), and capable of 25Gbit/sec operation.
關鍵字(中) ★ 1.雷射
★ 2.極化
★ 3.相對噪聲強度
★ 4.銅電鍍
★ 5.應力
關鍵字(英) ★ 1.VCSEL
★ 2.polarziation
★ 3.RIN
★ 4.Copper electroplating
★ 5.strain
論文目次 目錄

中文摘要 ………………………………………………………………………………… i
英文摘要 ………………………………………………………………………………… ii
誌謝 ……………………………………………………………………………………… iii
目錄 ……………………………………………………………………………………… iv
圖目錄 …………………………………………………………………………………… v
表目錄 …………………………………………………………………………………… vi
摘要 v
第一章 序論 1
1-1 簡介 1
1-2 垂直共振腔面射型雷射簡介 1
1-3 氧化層結構 5
1-4 單模VCSEL 7
1-5 高速VCSEL 12
1-6 低相對噪音強度(Relative Intensity Noise,RIN)VCSEL 15
第二章 實驗理論 24
2-1 IET 850nm波段VCSEL晶片磊晶結構 24
2-2 IQE850nm波段VCSEL晶片磊晶結構 26
2-3 VCSEL 濕氧化原理 26
2-4 RIN原理 29
2-5 濕氧化系統 30
2-6 IR CCD 系統 31
第三章 實驗 32
3-1 鋅擴散 (Zn diffusion) 32
3-2 水氧氧化 35
3-3 製作電極(P_Metal和N_Metal) 39
3-4 平坦化 41
3-5 Via Opening 43
3-6 PAD金屬 44
3-7 銅電鍍 45
第四章 量測結果與討論 47
4-1 量測系統介紹 47
4-1-1 靜態量測 47
4-1-2 動態量測 50
4-2 圓形凸台高速VCSEL 53
4-2-1 結構 53
4-2-2 靜態量測 53
4-2-3 動態量測 56
4-2-4 結論 59
4-3 矩形凸台高速VCSEL 60
4-3-1 結構 60
4-3-2 靜態量測 61
4-3-3 動態量測 65
4-3-4 比較 71
4-3-5 結論 72
4-4 鋅擴散(圓與橢圓)高速VCSEL 73
4-4-1 結構 73
4-4-2 靜態量測 73
4-4-3 動態量測 76
4-4-4 亮度 79
4-4-5 結論 81
第五章 結論與未來討論 82
References 83
參考文獻 [1] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 10, pp. 1810-1824, Oct., 1997.
[2] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proceedings of the IEEE, vol. 85, no. 11, pp. 1730-1739, Nov., 1997.
[3] Y. Chang and L. A. Coldren, “Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 704-715, May-June ,2009.
[4] M. Yazdanypoor and A. Gholami, “Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1701708-1701708, July-Aug., 2013.
[5] 顏志成, “具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,” 國立中央大學研究所論文(民國101)
[6] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon and A. R. Weidberg, “Corrosion-Based Failure of Oxide-Aperture VCSELs,” IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[7] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J1-12, Feb., 2007.
[8] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[9] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Tech. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[10] A. Haglund, J. S. Gustavsson, P. Modh and A. Larsson, “Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation,” IEEE Photonics Tech. Lett., vol. 17, no. 8, pp. 1602-1604, Aug., 2005.
[11] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh ,T.Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Proc. SPIE, vol. 85, no. 22, Nov., 2004.
[12] K. L. Lear, R. P. Schneider, K. D. Choquette and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photonics Tech. Lett., vol. 8, no. 6, pp. 740-742, Jun., 1996.
[13] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, Jan., 1995.
[14] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, Apr., 1995.
[15] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg and K. D. Choquette, “Error-Free Transmission Over 1-km OM4 Multimode Fiber at 25 Gb/s Using a Single Mode Photonic Crystal Vertical-Cavity Surface-Emitting Laser,” IEEE Photonics Tech. Lett., vol. 25, no. 18, pp. 1823-1825, Sep., 2013.
[16] Yang Liu, Wei-Choon, Ng, B. Klein and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 39, no. 1, pp. 99-108, Jan., 2003.
[17] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photonics Tech. Lett., vol. 13, no. 9, pp. 927-929, Sep., 2001.
[18] E. Heidari, H. Dalir, M. Ahmed, V. J. Sorger, R. T. Chen,” Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers,” Nanophotonics., vol. 9, no. 16, pp. 4743-4748, Oct., 2020.
[19]Yoshida M, De Zoysa M, Ishizaki K, Tanaka Y, Kawasaki M, Hatsuda R, Song B, Gelleta J, Noda S, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nature Materials, pp. 121–128, Nov., 2019.
[20] https://www.eettaiwan.com/20170126ta31-pam4-creates-new-test-challenges/
[21] https://standards.incits.org/apps/group_public/download.php/81212/15-332v0.pdf
[22] D. M. Kuchta, J. Gamelin, J. Walker, J. Lin, K. Lau, J. Smith, “Relative intensity noise of vertical cavity surface emitting lasers,” Applied physics letters, vol. 62, pp. 1194-1196, Dec., 1992.
[23] T. Yoshikawa, T. Kawakami, H. Saito, H. Kosaka, M. Kajita, K. Kurihara, Y. Sugimoto, and K. Kasahara, “Polarization-controlled single-mode VCSEL,” IEEE Journal of Quantum Electronics, vol. 34, no. 6, pp. 1009-1015, Jun., 1998.
[24] Y.-G. Ju, Y.-H. Lee, H.-K. Shin, and II Kim, “Strong polarization selectivity in 780-nm vertical-cavity surface-emitting lasers grown on misoriented substrates,” Appl. Phys. Lett., vol. 71, pp. 741-743, Aug., 1997.
[25] P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, Gian Paolo Bava and Karl Joachim Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 5, pp. 1394-1405, Sep.-Oct., 2003.
[26] E. Haglund, M. Jahed, J. S. Gustavsson, A. Larsson, J. Goyvaerts, R. Baets, G. Roelkens, M. Rensing, and P. O’Brien, “High-power single transverse and polarization mode VCSEL for silicon photonics integration,” Opt. Express, vol. 27, pp. 18892-18899, Jun., 2019.
[27] J.-W. Shi, Z. Khan, R.-H. Horng, H.-Y. Yeh, C.-K. Huang, C.-Y. Liu., “High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain,” Optics Letters, vol. 45, no. 17, pp. 4839-4842, Sep., 2020.
[28] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[29] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,” Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[30] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold
operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[31] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,”
J. Appl. Phys., vol. 36, no. 12, pp. 3770-3778, Dec., 1965.
[32] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, p. 5213, Aug., 1992.
[33] K. D. Choquette, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, pp. 916-926, Jun., 1997.
[34] K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel and R. Hull, “Fabrication and performance of selectively oxidized vertical-cavity lasers,” IEEE Photonics Technology Letters, vol. 7, no. 11, pp. 1237-1239, Nov., 1995.
[35] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[36] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1385, Jun., 1996.
[37] S.-E.Hashemi, “Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” Master Thesis, Chalmers University of Technology, 2012.
[38] A. Nainani, D. Kim, T. Krishnamohan and K. Saraswat, "Hole Mobility and Its Enhancement with Strain for Technologically Relevant III-V Semiconductors," International Conference on Simulation of Semiconductor Processes and Devices, pp. 1-4, 2009.
[39] J.-F. Seurin, V. Khalfin, G. Xu, A. Miglo, D. Li, and D. Zhou, “High power red VCSEL arrays, “Proc. SPIE, Vertical-Cavity Surface-Emitting Lasers XVII, vol. 8639, pp. 863901, Mar., 2013.
指導教授 許晉瑋(JIN-WEI SHI) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明