博碩士論文 108521018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.144.25.195
姓名 王柏崴(Po-Wei Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P型鎂銀銻熱電材料之製程開發及其焊料之研究
(Process Innovation of P-type MgAgSb Thermoelectric Materials and solder)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來能源問題一直都是最重要的議題,目前世界上最常用的發電方式為火力發電與核能發電,兩者都有廢熱的產生,能量損耗非常的嚴重,所以能夠將熱能轉換成電能的熱電技術受到大量關注。
隨著熱電元件的廣泛應用,Bi2Te3化合物長期以來一直是550K以下發電的最佳的低溫區熱電材料,但由於Te元素的缺乏和具有毒性,因此非常需要找尋無毒且地球上含量豐富的元素作為替代高效能熱電材料,近年來MgAgSb作為一種高效能、無毒且豐富的低溫區熱電材料,成為科學家熱門研究主題。
本實驗是將MgAgSb進行熱電特性改善,實驗結果的熱電特性最高Seebeck係數達132.65 (μV∙K^(-1)),最低電阻率達1.45(mΩ-cm),最低熱導率為1.3(W/m-k),最佳塊材的ZT值,在398K時ZT值擁有0.2706,並且量測單一試片輸出,然後利用銅片作為電極,Sn和Ni作為焊料,並將試片、接觸金屬與電極結合,最大開路電壓分別為0.885mV和0.806mV、最大短路電流為0.317mA和0.253mA以及最大輸出功率為0.0701μW和0.051μW。
摘要(英) With the widespread application of thermoelectric elements, Bi2Te3 compounds have long been the best low-temperature thermoelectric materials for power generation below 550K. However, due to the lack of Te element and its toxicity, it is very necessary to find non-toxic and abundant elements on the earth as a substitute High-efficiency thermoelectric materials. In recent years, MgAgSb is a high-efficiency and non-toxic and abundant low-temperature thermoelectric material which has become a popular research topic for scientists.
This experiment is to improve the thermoelectric properties of MgAgSb. The experimental results show that the thermoelectric properties have the highest Seebeck coefficient of 132.65 (μV∙K^(-1)), the lowest resistivity of 1.45 (mΩ-cm), and the lowest thermal conductivity of 1.3(W/m-k). The ZT value of the best sample has 0.2706 at 398K. The output of a single output test sample is measured and the copper sheet is used as the electrode, Sn and Ni are used as the solder. The maximum open circuit voltage is 0.885mV and 0.806mV, the maximum short-circuit current is 0.317mA and 0.253mA, and the maximum output power is 0.0701μW and 0.051μW.
關鍵字(中) ★ 熱電材料 關鍵字(英)
論文目次 目錄

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 熱電效應 2
1-2-1 Seebeck效應 2
1-2-2 Peltier效應 3
1-2-3 Thomson效應 4
1-2-4 熱電優值 5
1-2-5 熱電優值與轉換效率之關係 6
1-3 熱電材料簡介 7
1-4 熱電材料應用 8
1-5 MgAgSb熱電材料 9
1-6 焊料合金材料 11
1-7 研究動機 12
第二章 實驗量測儀器 18
2-1 電阻率量測 18
2-2 Seebeck係數量測 22
2-3 熱導率量測 23
2-4 掃描電子顯微鏡 (SEM) 27
2-5 X射線粉末繞射儀 (XRD) 28
2-6 單一試片輸出量測 29
第三章 實驗方法與步驟 32
3-1 實驗流程 32
3-2 製程開發流程 33
3-3 樣品製備 34
3-3-1 Sb奈米粉末製備 34
3-3-2 Mg_3 Sb_2與Ag_3 Sb粉末混和 37
3-3-3 將Mg_3 Sb_2與Ag_3 Sb冷壓成塊材 37
3-3-4 高溫燒結Mg_3 Sb_2 38
3-3-5 高溫燒結Ag_3 Sb 40
3-3-6 球磨Mg_3 Sb_2和Ag_3 Sb 41
3-3-7 高溫燒結MgAgSb 41
3-3-8 不同燒結溫度條件調整 42
3-3-9 不同化學劑量之比例調整 42
3-3-10 摻雜Mg_2 Sn粉末 43
3-4 單一輸出試片製作 43
第四章 實驗結果與討論 45
4-1 溫度測試討論 45
4-2 Mg_3 Sb_2與Ag_3 Sb粉末之化學劑量比例調整討論 47
4-3 摻雜Mg_2 Sn粉末 49
4-4 MgAgSb結果討論 52
4-5 單一試片輸出量測與焊料討論 57
第五章 結論與未來展望 60
參考文獻 61
參考文獻 參考文獻
[1] H. J. Goldsmid, Introduction to thermoelectricity. Springer, 2010.
[2] 鄭安良, "P 型熱電材料Bi0.5Sb1.5Te3 之合成與分析," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2011. [Online]. Available: https://hdl.handle.net/11296/hkakss
[3] Y. G. Gurevich and G. Logvinov, "Physics of thermoelectric cooling," Semiconductor science and technology, vol. 20, no. 12, p. R57, 2005.
[4] 陳尚謙, "準單晶碲化鉍奈米線和薄膜的熱電性質研究," 碩士, 應用物理研究所, 國立政治大學, 台北市. [Online]. Available: https://hdl.handle.net/11296/s8z2g9
[5] 葉建弦. "固態熱電材料在廢熱回收領域之應用." 工業技術研究院綠能與環境研究所.
[6] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese science bulletin, vol. 59, no. 18, pp. 2073-2091, 2014.
[7] 李杰, "MgAgSb系列熱電材料生長與傳輸性質研究," 碩士, 物理學系, 國立東華大學, 花蓮縣, 2015. [Online]. Available: https://hdl.handle.net/11296/2ad3hr
[8] 百度知道. "氧化物热电材料." https://zhidao.baidu.com/question/713742242452915965.html?&mzl=qb_xg_6&word
[9] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O′quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, no. 6856, pp. 597-602, 2001.
[10] 朱旭山. "熱電材料與元件之原理與應用." 電子與材料雜誌.
[11] L. H. Huang, Q. Y. Zhang, B. Yuan, X. Lai, X. Yan, and Z. F. Ren, "Recent progress in half-Heusler thermoelectric materials," Materials Research Bulletin, vol. 76, pp. 107-112, Apr 2016, doi: 10.1016/j.materresbull.2015.11.032.
[12] G. Zhou, J.-w. Xu, and G.-h. Rao, "Hole doped α-MgAgSb as potential low temperature thermoelectric materials," Physics Letters A, vol. 383, no. 26, p. 125833, 2019.
[13] H. Zhao et al., "High thermoelectric performance of MgAgSb-based materials," Nano Energy, vol. 7, pp. 97-103, 2014.
[14] P. Ying et al., "High performance α-MgAgSb thermoelectric materials for low temperature power generation," Chemistry of Materials, vol. 27, no. 3, pp. 909-913, 2015.
[15] M. J. Kirkham, A. M. dos Santos, C. J. Rawn, E. Lara-Curzio, J. W. Sharp, and A. J. Thompson, "Ab initio determination of crystal structures of the thermoelectric material MgAgSb," (in English), Phys. Rev. B, Article vol. 85, no. 14, p. 7, Apr 2012, Art no. 144120, doi: 10.1103/PhysRevB.85.144120.
[16] J.-W. Yoon and S.-B. Jung, "Interfacial reactions between Sn–0.4 Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction," Journal of alloys and compounds, vol. 396, no. 1-2, pp. 122-127, 2005.
[17] K. Suganuma, "Advances in lead-free electronics soldering," Current Opinion in Solid State and Materials Science, vol. 5, no. 1, pp. 55-64, 2001.
[18] M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Materials Science and Engineering: R: Reports, vol. 27, no. 5-6, pp. 95-141, 2000.
[19] P. D. Sonawane and V. B. Raja, "Advances in lead-free solders," International Journal of Mechanical Engineering and Technology, vol. 10, no. 2, pp. 520-526, 2019.
[20] H. R. Kotadia, P. D. Howes, and S. H. Mannan, "A review: On the development of low melting temperature Pb-free solders," Microelectronics Reliability, vol. 54, no. 6-7, pp. 1253-1273, 2014.
[21] C. B. Da Cruz, T. S. Lima, T. A. Costa, C. Brito, A. Garcia, and N. Cheung, "Sn-Mg lead-free solder alloy: Effect of solidification thermal parameters on microstructural features and microhardness," Materials Research Express, vol. 6, no. 12, p. 126562, 2019.
[22] 鄭詩諺, "P 型熱電材料之製程開發及模組研究," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/e3562v
[23] 余柏呈, "P型鎂銀銻化合物熱電材料開發及模組製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/gxzxk5
[24] 科豐國際有限公司. "Introduction of 4 Point Probe.".
[25] 科邁斯科技. "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹." https://www.techmaxasia.com/knowledge-detail/DSC-20210208/
[26] 徐梁. "閃光導熱儀LFA原理與測試."
[27] S. Swapp. "Scanning Electron Microscopy (SEM)." Geochemical Instrumentation and Analysis. https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.
[28] 材料世界網. "XRD分析應用簡介." https://www.materialsnet.com.tw/DocView.aspx?id=592.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2021-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明