參考文獻 |
林博雄、楊穎堅、劉清煌、徐世裴、楊菁華、吳靜軒、游政谷、詹森、隨中興(2016):南海─海洋大陸區對流與大尺度環流交互作用:2016冬季風預實驗。大氣科學,44,329-352。
Barahona, D., Molod, A., & Kalesse, H. (2017). Direct estimation of the global distribution of vertical velocity within cirrus clouds. Scientific reports, 7 (1), 1-11.
Bao, S., Letu, H., Zhao, C., Tana, G., Shang, H., Wang, T., ... & Zhao, J. (2018). Spatiotemporal distributions of cloud parameters and the temperature response over the Mongolian Plateau during 2006–2015 based on MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 549-558.
Chen, C. S., & Chen, Y. L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131 (7), 1323-1341.
Cesana, G., Waliser, D. E., Jiang, X., & Li, J. L. (2015). Multimodel evaluation of cloud phase transition using satellite and reanalysis data. Journal of Geophysical Research: Atmospheres, 120, 7871-7892.
Cho, H. M., Zhang, Z., Meyer, K., Lebsock, M., Platnick, S., Ackerman, A. S., ... & Holz, R. E. (2015). Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. Journal of Geophysical Research: Atmospheres, 120 (9), 4132-4154.
Chen, D., Guo, J., Wang, H., Li, J., Min, M., Zhao, W., & Yao, D. (2018). The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from Advanced Himawari Imager. Journal of Geophysical Research: Atmospheres, 123 (7), 3724-3739.
Chepfer, H., Brogniez, H., & Noël, V. (2019). Diurnal variations of cloud and relative humidity profiles across the tropics. Scientific reports, 9 (1), 1-9.
Chen, W. T., Hsu, S. P., Tsai, Y. H., & Sui, C. H. (2019). The influences of convectively coupled Kelvin waves on multiscale rainfall variability over the South China Sea and Maritime Continent in December 2016. Journal of Climate, 32 (20), 6977-6993.
DeMott, C. A., & Randall, D. A. (2004). Observed variations of tropical convective available potential energy. Journal of Geophysical Research: Atmospheres, 109 (D2).
Ding, Y.H., Li, C. Y., & Liu, Y. J. (2004). Overview of the South China Sea monsoon experiment. Advances in Atmospheric Sciences, 21 (3), 343-360.
Ding, Y. H., Li, C. Y., He, J. H., Chen, L., Gan, Z., Qian, Y., ... & Li, L. (2006). South China Sea monsoon experiment (SCSMEX) and the East-Asian monsoon. ACTA METEOROLOGICA SINICA-ENGLISH EDITION, 20 (2), 159.
Dong, X., Xi, B., & Wu, P. (2014). Investigation of the diurnal variation of marine boundary layer cloud microphysical properties at the Azores. Journal of Climate, 27 (23), 8827-8835.
Feofilov, A. G., & Stubenrauch, C. J. (2019). Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders. Atmospheric Chemistry and Physics, 19 (22), 13957-13972.
Gehlot, S., & Quaas, J. (2012). Convection–climate feedbacks in the ECHAM5 general circulation model: Evaluation of cirrus cloud life cycles with ISCCP satellite data from a Lagrangian trajectory perspective. Journal of climate, 25 (15), 5241-5259.
Gettelman, A., Collins, W. D., Fetzer, E. J., Eldering, A., Irion, F. W., Duffy, P. B., & Bala, G. (2006). Climatology of upper-tropospheric relative humidity from the Atmospheric Infrared Sounder and implications for climate. Journal of climate, 19 (23), 6104-6121.
Gasparini, B., Blossey, P. N., Hartmann, D. L., Lin, G., & Fan, J. (2019). What drives the life cycle of tropical anvil clouds?. Journal of Advances in Modeling Earth Systems, 11 (8), 2586-2605.
Gao, C., Li, Y., & Chen, H. (2019). Diurnal variations of different cloud types and the relationship between the diurnal variations of clouds and precipitation in central and east China. Atmosphere, 10 (6), 304.
Farmer, D. K., Cappa, C. D., & Kreidenweis, S. M. (2015). Atmospheric processes and their controlling influence on cloud condensation nuclei activity. Chemical Reviews, 115 (10), 4199-4217.
Jin, M., & Dickinson, R. E. (1999). Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 1. Without clouds. Journal of Geophysical Research: Atmospheres, 104 (D2), 2105-2116.
Jin, X., Wu, T., Li, L., & Shi, C. (2009). Cloudiness characteristics over Southeast Asia from satellite FY‐2C and their comparison to three other cloud data sets. Journal of Geophysical Research: Atmospheres, 114 (D17).
Jiang, J. H., Su, H., Zhai, C., Janice Shen, T., Wu, T., Zhang, J., ... & Shiotani, M. (2015). Evaluating the diurnal cycle of upper-tropospheric ice clouds in climate models using SMILES observations. Journal of the Atmospheric Sciences, 72 (3), 1022-1044.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., & Hubanks, P. A. (2013). Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE transactions on geoscience and remote sensing, 51 (7), 3826-3852.
Katsumata, M., Mori, S., Hamada, J. I., Hattori, M., Syamsudin, F., & Yamanaka, M. D. (2018). Diurnal cycle over a coastal area of the Maritime Continent as derived by special networked soundings over Jakarta during HARIMAU2010. Progress in Earth and Planetary Science, 5 (1), 1-19.
Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T. M., & Higurashi, A. (2018). Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite. IEEE Transactions on Geoscience and Remote Sensing, 56 (6), 3442-3455.
Luo, Z. J., Jeyaratnam, J., Iwasaki, S., Takahashi, H., & Anderson, R. (2014). Convective vertical velocity and cloud internal vertical structure: An A‐Train perspective. Geophysical Research Letters, 41 (2), 723-729.
Li, J., Mao, J., and Wang, F. (2017): Comparative study of five current reanalyses in characterizing total cloud fraction and top-of-the-atmosphere cloud radiative effects over the Asian monsoon region, Int. J. Climatol., 37.
Letu, H., Nagao, T. M., Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A. J., ... & Kikuchi, M. (2018). Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Transactions on Geoscience and Remote Sensing, 57, 3229-3239.
Letu, H., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J., ... & Shi, J. (2020). High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 239, 111583.
Liu, C-Y., Chiu, C-H., Lin, P-H., & Min, M. (2020). Comparison of Cloud‐Top Property Retrievals From Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. Journal of Geophysical Research: Atmospheres, 125 (15).
Machado, L. A. T., & Rossow, W. B. (1993). Structural characteristics and radiative properties of tropical cloud clusters. Monthly Weather Review, 121 (12), 3234-3260.
Menzel, W. P., Frey, R. A., Zhang, H., Wylie, D. P., Moeller, C. C., Holz, R. E., ... & Gumley, L. E. (2008). MODIS global cloud-top pressure and amount estimation: Algorithm description and results. Journal of Applied Meteorology and Climatology, 47 (4), 1175-1198.
Munneke Kuipers, P., Reijmer, C.H., Van Den Broeke, M.R. (2011): Assessing the retrieval of cloud properties from radiation measurements over snow and ice. International Journal of Climatology. 31, 756-769.
Mercury, M., Green, R., Hook, S., Oaida, B., Wu, W., Gunderson, A., & Chodas, M. (2012). Global cloud cover for assessment of optical satellite observation opportunities: A HyspIRI case study. Remote sensing of environment, 126, 62-71.
Matus, A. V., & L′Ecuyer, T. S. (2017). The role of cloud phase in Earth′s radiation budget. Journal of Geophysical Research: Atmospheres, 122(5), 2559-2578.
Narendra Babu, A., Nee, J. B., & Kumar, K. K. (2010). Seasonal and diurnal variation of convective available potential energy (CAPE) using COSMIC/FORMOSAT‐3 observations over the tropics. Journal of Geophysical Research: Atmospheres, 115(D4).
Noel, V., Chepfer, H., Chiriaco, M., & Yorks, J. (2018). The diurnal cycle of cloud profiles over land and ocean between 51° S and 51° N, seen by the CATS spaceborne lidar from the International Space Station. Atmospheric Chemistry and Physics, 18, 9457-9473.
Petty, G.W. (2006). A First Course in Atmospheric Radiation. Adison, Wisconsin.
Rutledge, S. A., & Houze Jr, R. A. (1987). A diagnostic modelling study of the trailing stratiform region of a midlatitude squall line. Journal of the atmospheric sciences, 44 (18), 2640-2656.
Rossow, W. B., & Schiffer, R. A. (1991). ISCCP cloud data products. Bulletin of the American Meteorological Society, 72 (1), 2-20.
Rossow, W.B., and Schiffer, R.A. (1999). Advances in Understanding Clouds from ISCCP. Bull. Amer. Meteor. Soc., 80.
Rangno, A. L. (2015). CLOUDS AND FOG (Classification of clouds). Encyclopedia of Atmospheric Sciences. 141-160.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., ... & Miller, S. D. (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83, 1771-1790.
Sekiguchi, M., Nakajima, T., Suzuki, K., Kawamoto, K., Higurashi, A., Rosenfeld, D., ... & Mukai, S. (2003). A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. Journal of Geophysical Research: Atmospheres, 108(D22).
Sun, D., Kafatos, M., Pinker, R. T., & Easterling, D. R. (2006). Seasonal variations in diurnal temperature range from satellites and surface observations. IEEE Transactions on Geoscience and Remote Sensing, 44 (10), 2779-2785.
Stubenrauch, C. J., Chédin, A., Rädel, G., Scott, N. A., & Serrar, S. (2006). Cloud properties and their seasonal and diurnal variability from TOVS Path-B. Journal of climate, 19, 5531-5553.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G., Chepfer, H., ... & Maddux, B. C. (2013). Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bulletin of the American Meteorological Society, 94, 1031-1049.
Santhi, Y. D., Ratnam, M. V., Dhaka, S. K., & Rao, S. V. (2014). Global morphology of convection indices observed using COSMIC GPS RO satellite measurements. Atmospheric research, 137, 205-215.
Seela, B. K., Janapati, J., Lin, P. L., Wang, P. K., & Lee, M. T. (2018). Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. Journal of Geophysical Research: Atmospheres, 123 (20), 11-602.
Shang, H., Letu, H., Nakajima, T. Y., Wang, Z., Ma, R., Wang, T., ... & Shi, J. (2018). Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Scientific reports, 8, 1-8.
Sun, G., Li, Y., & Lu, J. (2019). Cloud vertical structures associated with northward advance of the East Asian summer monsoon. Atmospheric Research, 215, 317-325.
Sui, C-H., Lin, P-H., Chen, W-T., Jan, S., Liu, C-Y., Yang, Y-J., ... & Tseng, L. S. (2020). The South China Sea Two Islands Monsoon Experiment for studying convection and subseasonal to seasonal variability. Terr. Atmos. Ocean. Sci, 31, 103-129.
Tian, B., Fetzer, E. J., Kahn, B. H., Teixeira, J., Manning, E., & Hearty, T. (2013). Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. Journal of Geophysical Research: Atmospheres, 118 (1), 114-134.
Van Diedenhoven, B., Fridlind, A. M., Cairns, B., Ackerman, A. S., & Yorks, J. E. (2016). Vertical variation of ice particle size in convective cloud tops. Geophysical research letters, 43 (9), 4586-4593.
Wang, B. (2002). Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 15 (4), 386-398.
With, L. M., Robert, A. H. (2006). Chapter 8: Weather Systems. Atmospheric Science, 313-373.
Wang, S. Y., & Chen, T. C. (2008). Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. Journal of applied meteorology and climatology, 47 (7), 2068-2080.
Wang, H., Luo, Y. L., & Zhang, R. H. (2011). Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data. Chinese Journal of Atmospheric Sciences, 35, 1117-1131.
Wang, Y., & Zhao, C. (2017). Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? Journal of Geophysical Research: Atmospheres, 122 (1), 329-343.
Xu, W. (2013). Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Monthly weather review, 141 (5), 1577-1592.
Yang, Y., Zhao, C.F., Dong, X.B., Fan, G.C., Zhou, Y.Q., Wang, Y., Zhao, L.J., Lv, F., Yan, F. (2019): Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmos.Res. 221, 27-33.
Yang, Y., Zhao, C., Fan, H. (2020): Spatiotemporal distribution of cloud properties over China based on Himawari-8 advanced Himawari imager data. Atmospheric Research. 240, 104927.
Zhao, W., Marchand, R., Fu, Q. (2017): The Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site: An Atmospheric State-Based Analysis and Error Decomposition of a Multiscale Modeling Framework Simulation. JGR Atmospheres. 122, 13387-13403.
Zhuge, X., Zou, X., Li, X., Tang, F., Yao, B., & Yu, L. (2021). Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019. Remote Sensing, 13 (9), 1687. |