博碩士論文 108521127 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.145.77.195
姓名 楊捷帆(CHIEH-FAN YANG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合儲電之電動車充電站能源管理系統
(Energy Management System for Electric Vehicle Charging Station with Battery Energy Storage System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著環保意識的抬頭,節能減碳是現今全球產業發展的重點,為了改善汽機車二氧化碳排放量的問題,逐漸發展出電動車等相關技術,再加上各國政策的推動,電動車將成為未來發展的方向。太陽光電系統受太陽光照度及環境溫度等因素影響,輸出功率具有高間歇性,由於功率瞬間變化量大,將造成電源供應不穩定。因此,本論文提出一能源管理系統,應用於具有太陽光電系統及電池儲能系統的電動車充電站,透過控制電池儲能系統的輸出功率,來達到提高能源使用效率及降低電動車充電站營運成本之目的。能源管理系統使用AAEON的嵌入式電腦BOXER-6641做為硬體,並整合華城電機EVALUE電動車充電站,能源管理系統收集電網電力資訊儲存並上傳雲端。本論文首先介紹電動車充電站硬體架構及電動車充電槍規格,接著介紹包含太陽光能平滑化之能源管理系統之通訊架構及調度模式。在能源管理系統之自動頻率控制模式中,偵測市電頻率變動,並根據調頻備轉輔助服務之調度曲線,透過控制電池儲能系統輸出功率來穩定市電的頻率,維持電力品質;在能源管理系統之契約容量模式中,電池儲能系統用來補償超過契約容量之負載功率,避免市電超約;在能源管理系統之時間電價模式中,電價低時市電對電池儲能系統充電,電價高時由電池儲能系統供電,不足的由市電供電。最後,利用模擬與實驗結果驗證所提出能源管理系統之成效。
摘要(英) With the rising of environmental awareness, the energy saving and carbon reduction are the focus of global industrial development today. In order to improve the problem of carbon dioxide emissions of automobiles, electric vehicles and other related technologies have been gradually developed. Owing to the promotion of policies of many countries, electric vehicles will become the direction of future development. Moreover, due to the variation of the illumination and temperature, the intermittent characteristics of a photovoltaic (PV) power system will cause negative impacts on power systems. This thesis proposes an energy management system (EMS) for the electric vehicle charging stations with PV power system and battery energy storage system (BESS). By controlling the input and output power of the BESS, the goal of improving energy efficiency and reducing the operating cost of the electric vehicle charging stations can be achieved. Furthermore, the EMS uses AAEON′s embedded computer BOXER-6641 as the host in Fortune Electric EVALUE electric vehicle charging station, which collects power information of the charging station and uploads it to the cloud. This thesis first introduces the hardware architecture of the electric vehicle charging station and the specifications of the electric vehicle charging plug, and then introduces the communication architecture and various modes of the EMS in detail. In the automatic frequency control (AFC) mode, the output power of the BESS is controlled according to the dReg and sReg dispatch curves to stabilize the frequency of grid. In the contract capacity mode, the BESS is used to compensate for the load power without exceeding the contract capacity. In the real time pricing mode, when the electricity price is high, the BESS is charged, and when the electricity price is high, the BESS is discharged. Finally, various simulation and experimental results are given to verify the effectiveness of the proposed EMS for the electric vehicle charging stations.
關鍵字(中) ★ 能源管理系統
★ 電動車充電站
★ 太陽光電系統
★ 電池儲能系統
★ 自動頻率控制
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XVI
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 本文貢獻 4
1.4 論文大綱 5
第二章 電動車充電站架構 7
2.1 硬體架構 7
2.2 設備規格 8
2.2.1 Solar Panels 8
2.2.2 PV inverter 9
2.2.3 BESS 11
2.2.4 PCS 13
2.2.5 AC Charger 14
2.2.6 DC Charger 16
第三章 電動車充電站諧波問題 17
3.1 諧波問題 17
3.2 電動車充電槍規格 21
3.2.1 SAE J1772 21
3.2.2 CCS1 25
3.2.3 CHAdeMO 28
3.3 解決方法與量測結果 30
第四章 能源管理系統介紹 35
4.1 硬體設備 35
4.1.1 BOXER-6641 35
4.1.2 WoMaster RS-328 37
4.1.3 PM-2218 38
4.1.4 Global Positioning System-SCC2010 40
4.1.5 JLS-LM 42
4.1.6 ADAM-6066 43
4.2 通訊架構 44
4.2.1 Modbus 45
4.2.2 CAN bus 48
4.2.3 系統通訊架構 49
4.3 能源管理系統 50
4.3.1 自動頻率控制模式 51
4.3.2 契約容量模式 54
4.3.3 時間電價模式 56
4.3.4 太陽光電功率平滑化控制模式 60
4.3.5 燈控系統 60
第五章 電動車充電站能源管理模擬 63
5.1 Case 1 PV輸出30kW對負載供電,多餘的再對電池儲能系統充電 66
5.1.1 Case 1a 負載>30kW 66
5.1.2 Case 1b 負載≦30kW 69
5.2 Case 2 PV輸出功率為0時,市電優先供電,電池儲能系統其次 73
5.2.1 Case 2a 負載>30kW 73
5.2.2 Case 2b 負載≦30kW 76
5.3 Case 3 滿載時,PV輸出30kW、電池儲能系統輸出30kW、市電供電給負載 80
5.4 Case 4 時間電價模式(24hr滿載) 84
5.4.1 Case 4a PV輸出30kW,電價>2.8(電池放電) 85
5.4.2 Case 4b PV輸出30kW,電價>2.8(電池放完電) 89
5.4.3 Case 4c PV輸出功率為0時,電價>2.8(電池放完電) 93
5.4.4 Case 4d PV輸出功率為0時,電價<2.8(市電對儲能充電) 98
第六章 儲能自動頻率控制介紹 103
6.1 調頻備轉輔助服務 103
6.1.1 dReg 103
6.1.2 sReg 104
6.2 儲能自動頻率控制 104
6.2.1 放電最大化 105
6.2.2 充電最大化 108
6.2.3 最小吞吐量 111
6.3 性能測試 114
6.3.1 步階輸出/輸入功率測試 115
6.3.2 頻率掃描測試 117
6.3.3 額定功率放電持續時間測試 120
6.3.4 額定功率充電持續時間測試 122
6.3.5 結論 124
第七章 結論與未來研究方向 125
7.1 結論 125
7.2 未來研究方向 126
參考文獻 127
作者簡歷 133
參考文獻 [1] 經濟部能源局,https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142。
[2] 再生能源資訊網,https://www.re.org.tw/news/more.aspx?cid=198&id=1443。
[3] 台電永續發展專區,https://csr.taipower.com.tw/tc/guide02.aspx?cid=101&cchk=739bc6d5-2901-4298-8881-c3cfba4adcce。
[4] Clean Energy Ministerial, CEM,https://www.cleanenergyministerial.org/campaign-clean-energy-ministerial/ev3030-campaign。
[5] 台灣經濟研究院,https://www.tier.org.tw/comment/pec5010.aspx?GUID=905d95ab-454f-4fa0-bc4b-76ce9c8863ec。
[6] V. Calderaro, V. Galdi, G. Graber, G. Graditi and F. Lamberti, “Impact Assessment of Energy Storage and Electric Vehicles on Smart Grids, ” 2014 Electric Power Quality and Supply Reliability Conference (PQ), 28 July 2014.
[7] D. Y. Jung, Y. H. Ji, C. Y. Won, T. K. Lee, S. W. Lee and K. D. Seo, “Grid-Connected Electric Vehicles Charger Station Based on Lithium Polymer Battery Energy Storage System, ” 2010 IEEE Vehicle Power and Propulsion Conference, 10 March 2011.
[8] S. Rivera and B. Wu, “Electric Vehicle Charging Station With an Energy Storage Stage for Split-DC Bus Voltage Balancing, ” IEEE Transactions On Power Electronics, vol. 32, no. 3, March 2017.
[9] L. Pinter and C. Farkas, “ Impacts of electric vehicle chargers on the power grid, ” 2015 5th International Youth Conference on Energy (IYCE), 06 August 2015.
[10] J. Guangxue, Z. Xianping, X. Song, C. Min, P. Songlin and Z. Nianchen, “Research on Control Strategy of Energy Storage Buffer System for Electric Vehicle Smart Charging Station, ” 2012 China International Conference on Electricity Distribution, 29 April 2013.
[11] X. Li, D. Hui and X. Lai, “Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 464-473, Apr. 2013.
[12] R. P. Sasmal, S. Sen and A. Chakraborty, “Solar photovoltaic output smoothing: using battery energy storage system,” 2016 National Power Systems Conference (NPSC), Bhubaneswar, pp. 1-5, 2016.
[13] H. Nazaripouya, C. Chu, H. R. Pota and R. Gadh, “Battery energy storage system control for intermittency smoothing using an optimized two-stage filter,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 664-675, Apr. 2018.
[14] G. Stoeckl and R. Witzmann, “Charging Strategies for Electric Vehicles in Low Voltage Grids with a High Amount of Distributed Renewable Energies, ” 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13-17 May 2013.
[15] V. F. Pires, A. Roque, D. M. Sousa and G. Marques, “Photovoltaic electric vehicle chargers as a support for reactive power compensation, ” 2012 International Conference on Renewable Energy Research and Applications (ICRERA), 14 March 2013.
[16] L. Chandra and S. Chanana, “Energy Management of Smart Homes with Energy Storage, Rooftop PV and Electric Vehicle, ” 2018 IEEE International Students′ Conference on Electrical, Electronics and Computer Science (SCEECS), 29 November 2018.
[17] A. Sangswang and M. Konghirun, “Optimal Strategies in Home Energy Management System Integrating Solar Power, Energy Storage, and Vehicle-to-Grid for Grid Support and Energy Efficiency, ” IEEE Transactions On Industry Applications, vol. 56, no. 5, September/October 2020.
[18] T. Ishibashi, T. Shimakage, N. Takeuchi, T. Kikuchi and M. Nonogaki, “Energy Management Using a Quick Charger with Storage Batteries for Electric Vehicles, ” 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 25 October 2018.
[19] X. Duan, Z. Hu and Y. Song, “Bidding Strategies in Energy and Reserve Markets for an Aggregator of Multiple EV Fast Charging Stations With Battery Storage, ” IEEE Transactions On Intelligent Transportation Systems, vol. 22, no. 1, January 2021.
[20] K. Chaudhari, A. Ukil, K. N. Kumar, U.Manandhar and S. K. Kollimalla, “Hybrid Optimization for Economic Deployment of ESS in PV-Integrated EV Charging Stations, ” IEEE Transactions On Industrial Informatics, vol. 14, no. 1, January 2018.
[21] Q. Yan, B. Zhang and M. Kezunovic, “Optimized Operational Cost Reduction for an EV Charging Station Integrated With Battery Energy Storage and PV Generation, ” IEEE Transactions On Smart Grid, vol. 10, no. 2, March 2019.
[22] C. Luo, Y. F. Huang and V. Gupta, “Stochastic Dynamic Pricing for EV Charging Stations With Renewable Integration and Energy Storage, ” IEEE Transactions On Smart Grid, vol. 9, no. 2, March 2018.
[23] F. M. Shakeel and O. P. Malik, “Vehicle-To-Grid Technology in a Micro-grid Using DC Fast Charging Architecture, ” 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 10 October 2019.
[24] M. Shin, D. H. Choi and J. Kim, “Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach, ” IEEE Transactions On Industrial Informatics, vol. 16, no. 5, May 2020.
[25] 聯合再生能源股份有限公司https://www.urecorp.com/Product_solarpower_module.php#fixed。
[26] 新望股份有限公司,https://primevolt.com.tw/%e7%94%a2%e5%93%81%e4%b8%ad%e5%bf%83/%e4%b8%89%e7%9b%b8%e4%bd%b5%e7%b6%b2%e5%9e%8b%e8%ae%8a%e6%b5%81%e5%99%a8/。
[27] 有量科技股份有限公司,http://www.amitatech.com/tw/products_list.php?c=1。
[28] LS ELECTRIC,
https://www.ls-electric.com/jp/product/view/P01005。
[29] 華城電機股份有限公司,https://www.evalue.com.tw/service.aspx?id=17。
[30] SAE J1772,
https://en.wikipedia.org/wiki/SAE_J1772。
[31] Untangling electric vehicle chargers – Exploring standards,
https://e2e.ti.com/blogs_/archives/b/smartgrid/posts/untangling-electric-vehicle-chargers-exploring-standards。
[32] CCS1,
https://en.wikipedia.org/wiki/Combined_Charging_System。
[33] CHAdeMO,
https://www.chademo.com/technology/technology-overview/。
[34] CHAdeMO Charging Flow Chart,
https://mynissanleaf.com/viewtopic.php?t=7764。
[35] 研揚科技股份有限公司,
https://www.aaeon.com/cn/p/fanless-embedded-box-pc-socket-type-boxer-6641。
[36] 波動光股份有限公司,
https://www.womaster.eu/download_50_73.htm。
[37] 祥正電機股份有限公司,
https://www.hc.com.tw/products-detail/tw/24/PM2218。
[38] 鉅量物聯科技,https://www.juliangiot.com/%e7%94%a2%e5%93%81%e8%b3%87%e8%a8%8a/%e9%89%85%e9%87%8f%e6%99%ba%e6%85%a7%e8%be%b2%e6%a5%ad%e7%b3%bb%e7%b5%b1/%e5%90%84%e5%bc%8f%e6%84%9f%e6%b8%ac%e5%99%a8/%e5%85%89%e7%85%a7%e5%ba%a6%e5%90%ab%e6%ba%ab%e6%ba%bc%e5%ba%a6%e6%84%9f%e6%b8%ac%e5%99%a8。
[39] 研華股份有限公司,
https://www.advantech.tw/products/GF-5WLT/ADAM-6066/mod_E256CAFC-36DD-4740-86A0-D7E53B5C4DDF。
[40] The Modbus Organization,
http://www.modbus.org/。
[41] CAN bus,
https://en.wikipedia.org/wiki/CAN_bus。
[42] AFC, https://www.taipower.com.tw/upload/130/2020070315455384240.pdf。
[43] 台灣電力公司,
https://www.taipower.com.tw/tc/page.aspx?mid=238。
[44] 郭哲男,「具智慧型太陽光電功率平滑化控制之微電網電能管理系統」,國立中央大學電機工程研究所,碩士論文,民國109年
指導教授 林法正 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明