博碩士論文 107521116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:52.15.69.175
姓名 陳冠州(Kuan-Chou Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用B類連續技術於C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製
(Implementations on n77-band GaN Doherty Power Amplifier with GaAs Integrated Passive Devices and C/Ka bands GaN/GaAs Power Amplifiers with Class-B Continuous Mode Techniques)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用穩懋半導體公司(WINTM)所提供之0.25-µm GaN/SiC 製程與砷化鎵積體被動元件 (WIPD, WIN Integrated Passive Device) 製程以及0.15-µm InGaAs pHEMT 製程,分別進行n77頻段多悌功率放大器、C頻段B類連續模式功率放大器以及Ka頻段寬頻功率放大器之設計。
第二章提出採用多悌負載調變網路於氮化鎵/砷化鎵積體被動元件功率放大器之研究,來改善一般功率放大器回退效率不佳的問題,量測結果顯示3-dB 頻寬為 3.1 ~ 4.0 GHz,最佳傳輸增益為10.7 dB,因為量測的限制,大訊號量測無法提供完整數據,模擬結果顯示了在3.3 ~ 4.1 GHz的頻帶內,飽和效率約68.3 %,回退6 dB時的效率,約為51 %,氮化鎵晶片面積為0.77 (1.6 × 0.48) mm2,砷化鎵晶片面積為5.08 (1.36 × 1.87) mm2。
第三章提出應用於C頻段寬頻高效率氮化鎵功率放大器,透過偏壓挑選的方式,改善AM-AM的線性度,輸出匹配電路利用B類連續技術的方式,完成基頻與二次諧波項的匹配,來達到寬頻且高效率之功率放大器。量測結果顯示最佳傳輸增益為20.7 dB,3 dB頻寬為4.1 – 5.0 GHz,飽和輸出功率為 38 dBm,功率附加效率最高可達 40 %,晶片面積為4.86 (2.76 × 1.76) mm2。
第四章提出應用於 Ka 頻段寬頻高效率砷化鎵功率放大器,透過偏壓挑選的方式,提供一種不損失增益與效率的前提下,達到最好的增益、輸出功率與效率的權衡,輸出匹配電路沿用連續B類技術,達到寬頻且高效率之功率放大器。量測結果顯示最佳傳輸增益為18.8 dB,3 dB頻寬為25 – 30.2 GHz,飽和輸出功率為 25.5 dBm,功率附加效率最高可達 29.7 %,晶片面積為1.08 (1.32 × 0.82) mm2。
摘要(英) The thesis developed three power amplifiers that were designed in WINTM 0.25-µm GaN/SiC, GaAs integrated passive devices (IPD), and 0.15-µm GaAs processes. The first design is a Doherty power amplifier (DPA) for n77 band (3.3-4.2 GHz) application in GaN and GaAs IPD processes, the second one is a continuous class-B mode power amplifier for C band operation in GaN/SiC process and the third one is a continuous class-B mode power amplifier for Ka band operation in 0.15 m GaAs pHEMT process.
Chapter 2 presents an n77-band DPA in GaN and GaAs IPD processes. To improve the drawback of poor efficiency at power back-off in conventional power amplifier. The measurements achieve a peak power gain of 10.7 dB across a 3-dB bandwidth from 3.1 to 4.0 GHz. Due to measurement limitation, large signal measurement cannot provide complete data for now. The simulation results show a saturated drain efficiency of 68.3 %, and a drain efficiency at back-off 6 dB of 51 % in n77 band. The chip area of the GaN die is 0.77 (1.6 × 0.48) mm2, and the chip area of the GaAs IPD is 5.08 (1.36 × 1.87) mm2.
Chapter 3 presents a C band broadband high efficiency power amplifier in GaN/SiC process. According to the analysis of large signal transconductance, the appropriate bias voltage is selected to improve the AM-AM linearity. The high-efficiency and broadband performances are achieved by using continuous Class-B mode for the fundamental and second harmonics output matching network. The measurement results show that the peak power gain is 20.7 dB, the 3-dB bandwidth is from 4.1 to 5.0 GHz, the saturated output power is 38 dBm, the peak power added efficiency is to 40 %, and the chip area is 4.86 (2.76 × 1.76) mm2.
Chapter 4 presents a Ka band broadband high efficiency power amplifier in GaAs process. The power amplifier achieves the best trade-off among gain, output power and efficiency without loss of the gain and efficiency via proper bias selections. The high-efficiency and broadband performances are achieved by using continuous Class-B mode for fundamental and second harmonics output matching network. The measurement results show that the peak power gain is 18.8 dB, the 3-dB bandwidth is from 25 to 30.2 GHz, the saturated output power is 25.5 dBm, the peak power added efficiency is to 29.7%, and the chip area is 1.08 (1.32 × 0.82) mm2.
關鍵字(中) ★ 功率放大器
★ 氮化鎵
★ 砷化鎵
★ B類連續模式
★ 多悌
關鍵字(英) ★ power amplifier
★ GaN
★ GaAs
★ Class-B Continuous Mode
★ Doherty
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 多悌功率放大器 3
2-1 研究現況 3
2-2 功率放大器操作簡介 4
2-3 多悌負載調變介紹 8
2-4 應用於n77頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器 13
2-4-1 架構圖 13
2-4-2 電路圖 14
2-4-3 輸出匹配設計 15
2-4-4 輸入端功率分配器設計 20
2-4-5 電路模擬與量測結果 23
2-4-6 結果比較與討論 31
第三章 應用B類連續技術於C頻段氮化鎵功率放大器 34
3-1 氮化鎵功率放大器研究現況 34
3-2 連續模式技術介紹 35
3-3 應用B類連續技術於C頻段氮化鎵功率放大器設計 38
3-3-1 電路圖 38
3-3-2 電晶體特性評估 39
3-3-3 輸出匹配設計 42
3-3-4 電路模擬與量測結果 47
3-3-5 結果比較與討論 61
第四章 應用B類連續技術於Ka頻段砷化鎵功率放大器 65
4-1 毫米波功率放大器研究現況 65
4-2 應用B類連續技術於Ka頻段砷化鎵功率放大器設計 66
4-2-1 電路圖 66
4-2-2 電晶體特性評估 67
4-2-3 輸出匹配網路設計 72
4-2-4 電路模擬與量測結果 76
4-2-5 結果比較與討論 90
第五章 結論 93
5-1 總結 93
5-2 未來方向 94
參考文獻 95
參考文獻 [1] W. H. Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," in Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936.
[2] S. Jee, J. Lee, B. Park, C. H. Kim and B. Kim, "GaN MMIC broadband Doherty power amplifier," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 603-605.
[3] C. H. Kim, S. Jee, G. Jo, K. Lee and B. Kim, "A 2.14-GHz GaN MMIC Doherty Power Amplifier for Small-Cell Base Stations," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 4, pp. 263-265, April 2014.
[4] C. H. Kim and B. Park, "Fully-Integrated Two-Stage GaN MMIC Doherty Power Amplifier for LTE Small Cells," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, Nov. 2016.
[5] R. Ishikawa, Y. Takayama and K. Honjo, "Fully Integrated Asymmetric Doherty Amplifier Based on Two-Power-Level Impedance Optimization," 2018 13th European Microwave Integrated Circuits Conference (EuMIC), 2018, pp. 253-256.
[6] S. Li, S. S. H. Hsu, J. Zhang and K. Huang, "Design of a Compact GaN MMIC Doherty Power Amplifier and System Level Analysis With X-Parameters for 5G Communications," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, Dec. 2018.
[7] H. Lee et al., "Compact Load Network for GaN-HEMT Doherty Power Amplifier IC Using Left-Handed and Right-Handed Transmission Lines," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 293-295, March 2017.
[8] H. Lee et al., "Highly Efficient Fully Integrated GaN-HEMT Doherty Power Amplifier Based on Compact Load Network," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5203-5211, Dec. 2017.
[9] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth Enhancement of GaN MMIC Doherty Power Amplifiers Using Broadband Transformer-Based Load Modulation Network," in IEEE Access, vol. 7, pp. 119844-119855, 2019.
[10] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, "A Fully Integrated C-Band GaN MMIC Doherty Power Amplifier With High Efficiency and Compact Size for 5G Application," in IEEE Access, vol. 7, pp. 71665-71674, 2019.
[11] D. Gustafsson, K. Andersson, A. Leidenhed, M. Malmstrom, A. Rhodin and T. Wegeland, "A packaged hybrid doherty PA for microwave links," 2016 46th European Microwave Conference (EuMC), 2016, pp. 1437-1440.
[12] S. Maroldt and M. Ercoli, "3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017, pp. 196-199.
[13] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 771-773.
[14] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty Power Amplifier in Quasi-MMIC Technology," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019.
[15] M. Özen and C. Fager, "Symmetrical doherty amplifier with high efficiency over large output power dynamic range," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014, pp. 1-4.
[16] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[17] H. Wang, C. Sideris and A. Hajimiri, "A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[18] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764-1783, June 2012.
[19] G. Nikandish and A. Medi, "A Design Procedure for High-Efficiency and Compact-Size 5–10-W MMIC Power Amplifiers in GaAs pHEMT Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2922-2933, Aug. 2013.
[20] R. Quaglia, V. Camarchia, M. Pirola, J. J. M. Rubio and G. Ghione, "Linear GaN MMIC Combined Power Amplifiers for 7-GHz Microwave Backhaul," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2700-2710, Nov. 2014.
[21] Y. Xu et al., "A Scalable Large-Signal Multiharmonic Model of AlGaN/GaN HEMTs and Its Application in C-Band High Power Amplifier MMIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2836-2846, Aug. 2017.
[22] R. Giofrè, P. Colantonio and F. Giannini, "A Design Approach to Maximize the Efficiency vs. Linearity Trade-Off in Fixed and Modulated Load GaN Power Amplifiers," in IEEE Access, vol. 6, pp. 9247-9255, 2018.
[23] J. Moon, J. Kim and B. Kim, "Investigation of a Class-J Power Amplifier With a Nonlinear $C_{
m out}$ for Optimized Operation," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2800-2811, Nov. 2010.
[24] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, "Integrated Design of a Class-J Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1639-1648, April 2013.
[25] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A Fully Integrated Class-J GaN MMIC Power Amplifier for 5-GHz WLAN 802.11ax Application," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[26] G. Nikandish, R. B. Staszewski and A. Zhu, "A Broadband Continuous Class-FGaN MMIC PA Using Multi-Resonance Matching Network," 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[27] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A Fully Integrated Reconfigurable Multimode Class-F2,3 GaN Power Amplifier," in IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[28] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of Highly Linear Broadband Continuous Mode GaN MMIC Power Amplifiers for 5G," in IEEE Access, vol. 7, pp. 57138-57150, 2019.
[29] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the Continuity of High Efficiency Modes in Linear RF Power Amplifiers," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[30] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[31] H. Lee et al., "Compact Load Network for GaN-HEMT Doherty Power Amplifier IC Using Left-Handed and Right-Handed Transmission Lines," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 293-295, March 2017.
[32] G. Nikandish, R. B. Staszewski and A. Zhu, "Broadband Fully Integrated GaN Power Amplifier With Embedded Minimum Inductor Bandpass Filter and AM–PM Compensation," in IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 159-162, Sept. 2019.
[33] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband Fully Integrated GaN Power Amplifier With Minimum-Inductance BPF Matching and Two-Transistor AM-PM Compensation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[34] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Unbalanced Power Amplifier: An Architecture for Broadband Back-Off Efficiency Enhancement," in IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 367-381, Feb. 2021.
[35] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A Fully Integrated GaN Dual-Channel Power Amplifier With Crosstalk Suppression for 5G Massive MIMO Transmitters," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 246-250, Jan. 2021.
[36] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011.
[37] J. Curtis, A. Pham, M. Chirala, F. Aryanfar and Z. Pi, "A Ka-Band doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2013, pp. 349-352.
[38] D. P. Nguyen, B. L. Pham and A. Pham, "A compact 29% PAE at 6 dB power back-off E-mode GaAs pHEMT MMIC Doherty power amplifier at Ka-band," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1683-1686.
[39] G. Lv, W. Chen and Z. Feng, "A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications," 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 808-811.
[40] G. Lv, W. Chen, X. Chen, F. M. Ghannouchi and Z. Feng, "A Compact Ka/Q Dual-Band GaAs MMIC Doherty Power Amplifier With Simplified Offset Lines for 5G Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3110-3121, July 2019
[41] D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A Wideband High Efficiency Ka-Band MMIC Power Amplifier for 5G Wireless Communications," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5,
[42] V. Qunaj and P. Reynaert, "Compact Transformer-Based Matching Structures for Ka-Band Power Amplifiers," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 914-916.
[43] B. Park et al., "Highly Linear mm-Wave CMOS Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
[44] P. Indirayanti and P. Reynaert, "A 32 GHz 20 dBm-PSAT Transformer-based Doherty Power Amplifier for multi-Gb/s 5G Applications in 28 nm Bulk CMOS", IEEE RFIC Symp. Dig., pp. 45-48, 2017.
[45] D. Jeong et al., "Linear CMOS power amplifier at Ka-band with ultra-wide video bandwidth," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 220-223.
[46] T. Yao et al., "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[47] C. Lin and H. Chang, "A Broadband Injection-Locking Class-E Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[48] 紀品瑜,「應用J類連續模式技術於Ka頻段砷化鎵與C頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國109年
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明