博碩士論文 108521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.129.216.30
姓名 蔡佳容(Chia-Jung Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 掘入式三閘極氮化鎵增強型金絕半場效電晶體
(Normally-off Recessed Tri-Gate GaN MIS-FETs)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一般常見的三閘極(tri-gate)結構氮化鎵增強型金絕半場效電晶體為了達到正的臨界電壓,需要設計奈米尺寸的鰭寬度(WFin),來有效控制通道達成增強型工作,而製程則需要奈米等級曝光。本論文研究主要探討掘入式(gate recess)三閘極氮化鎵增強型金絕半場效電晶體,三閘極結構設計為在閘極金屬下方蝕刻微米等級的數個並列溝槽(trench),進而定義鰭式(fin shaped)溝道並提高閘極控制能力,再搭配氮化鋁鎵能障層的完全掘入確保元件為常關型操作,並同步製作掘入式平面金絕半場效電晶體進行電性比較。
在電晶體製作方面,使用高臺蝕刻與離子佈值兩種不同元件隔絕方式進行元件製作研究。元件藉由離子佈值絕緣後,當經過ICP進行溝槽挖掘後,額外使用稀釋的BOE、HCl 溶液和氫氧化四甲基銨(TMAH)處理清潔蝕刻表面,再透過原子層沉積(ALD) 沉積20 奈米的氧化鋁(Al2O3)當作閘極絕緣層。最後完成的元件具有1.2 m的溝槽寬度,0.8 m的鰭寬度。元件的最大增益轉導值、最大汲極電流值、最小次臨界擺幅、導通電阻、元件關閉時的漏電流方面,皆是掘入式三閘極氮化鎵增強型金絕半場效電晶體比掘入式平面元件之特性好,呈現出掘入式(gate recess)三閘極結構的優勢。掘入式三閘極金絕半場效電晶體具有2.5 V的臨界電壓、1121 mA/mm 的高汲極電流和2×10^8的電流開關比。且由遲滯效應去估算介面缺陷密度,跟量測電容使用電導法萃取界面缺陷密度有相似的趨勢,就是元件經過額外稀釋的BOE、HCl 溶液和氫氧化四甲基銨(TMAH)處理蝕刻表面可以改善介面缺陷密度。得到在介電層與半導體的界面,界面缺陷密度約為4×10^12 eV-1cm-2。此研究結果證實了微米等級的溝槽搭配掘入式製程可以呈現三閘極結構的氮化鎵元件。
摘要(英) In order to reach positive VTH in basic tri-gate devices, it is necessary to design nano-level fin-width (WFin) to effectively control the channel to achieve enhancement mode operation, and requires nano-level exposure accuracy. In this work, a normally-off Recessed tri-gate MIS-FET is fabricated and characterized. The Recessed tri-gate MIS-FET in this work is fabricated by micro-level trenches, which are used to define the fin-shaped channel and improve the gate control capability. Even with a micrometer trench width (WTrench), as long as the AlGaN barrier recessed completely under the gate metal, a normally-off recessed tri-gate GaN MIS-FET is achieved. For comparison, standard Recessed planar MIS-FETs were also fabricated using the same process flow on the same chip.
In terms of devices processing, two different device isolation methods, mesa isolation and ion implantation, are used for fabrication. After device are isolated by Ar-ion implantation and are etched trenches by ICP, the recessed surface is cleaned by a diluted BOE, HCl solution, and TMAH treatment before a 20 nm Al2O3 deposition by ALD. Finally, the finished Recessed tri-gate MIS-FET has a WTrench of 1.2 μm, and WFin of 0.8 μm. In I-V measurement, gm,max, ID,max, S.S., RON, and leakage current at off state of Recessed tri-gate MIS-FETs are better than Recessed planar MIS-FETs, which presents the advantages of tri-gate structure. Recessed tri-gate MIS-FET demonstrates a high threshold voltage of 2.5 V, a high drain current of 1121 mA/mm, and an on/off current ratio of 2×10^8. Besides, the devices show a low I-V hysteresis. A hysteresis effect in device I-V characteristics is used to estimate the interface state density(Dit), which is similar to the conductance extraction result in C-V measurements. That is, the device is cleaned by a diluted BOE, HCl solution, and TMAH treatment can improve the interface state density. The C-V measurement was carried out and the Dit distribution at different energy levels was about 4×10^12 eV-1cm-2. All experimental results confirm of combining micro scale trenches to form tri-gate structures and gate recess design can achieve high performance normally-off GaN transistors.
關鍵字(中) ★ 氮化鎵
★ 金絕半場效電晶體
★ 三閘極
★ 閘極掘入
★ 介面缺陷密度
關鍵字(英) ★ GaN
★ MIS-FET
★ Tri-gate
★ Gate recess
★ Interface state density
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 三五族半導體氮化鎵之材料發展與前景 3
1.3 實現增強型元件操作的方法與蝕刻後處理研究概況 5
1.3.1 實現增強型元件操作的方法 5
1.3.2 蝕刻後處理研究發展概況 18
1.4 研究動機與目的 19
1.5 論文架構 20
第二章 氮化鎵電晶體之磊晶結構與佈局及製程流程 21
2.1 AlGaN/GaN於矽基板之磊晶結構 21
2.1.1 磊晶結構 21
2.1.2 材料分析 23
2.2 Recessed tri-gate GaN MIS-FET之佈局與製程流程 31
2.2.1 元件佈局設計 31
2.2.2 Recessed tri-gate GaN MIS-FET之製作流程 33
2.3 結論 41
第三章 Recessed tri-gate GaN MIS-FETs之電性量測 42
3.1 常溫高臺蝕刻與離子佈值隔絕製程之量測討論 44
3.1.1 高臺蝕刻隔絕 44
3.1.2 離子佈值隔絕 50
3.1.3 兩種不同隔離方式下的結果比較 55
3.2 Recessed tri-gate MIS-FETs之蝕刻後TMAH預處理之研究 57
3.2.1 經過TMAH預處理之基本直流電性分析 58
3.2.2 有無經過TMAH預處理之基本直流電性比較分析 64
3.2.3 直流電性變溫量測 66
3.3 崩潰電壓與電容量測分析 69
3.3.1 崩潰電壓量測 69
3.3.2 電容—電壓量測分析 72
3.4 結論 82
第四章 結論 85
參考文獻 86
附錄 I 詳細製程流程 91
Publication List/Acknowledgement 95
參考文獻 [1] SemiconductorTODAY, “GaN to grow at 9% CAGR to over 18% of RF device market by 2020,” SemiconductorTODAY, 2014.
[2] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018, doi: 10.1063/1.5006941.
[3] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, “An Overview of Normally-Off GaN-Based High Electron Mobility Transistors,” Materials, vol. 12, no. 10, May 2019, doi:10.3390/ma12101599.
[4] R. Brown, “A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness,” Phd thesis, University of Glasgow, Jul. 2015.
[5] D. Balaz, “Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors,” Phd thesis, University of Glasgow, 2010.
[6] M. Meneghini, O. Hilt, J. Wuerfl and G. Meneghesso, “Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate,” Energies, vol. 10, no. 2, Jan. 2017, doi: 10.3390/en10020153.
[7] D. Marcon, M. V. Hove, B. D. Jaeger, N. Posthuma, D. Wellekens, S. You, X. Kang, T. L. Wu, M. Willems, S. Stoffels, and S. Decoutere, “Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-On-Si with Au-free technology,” Proc. of SPIE, vol. 9363, pp. 936311-1–936311-12, Mar. 2015.
[8] T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 668–670, Jul. 2008, doi: 10.1109/LED.2008.2000607.
[9] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, Nov. 2013, doi: 10.1109/LED.2013.2279844.
[10] T. L. Wu, J. Franco, D. Marcon, B. D. Jaeger, B. Bakeroot, S. Stoffels, M. V. Hove, G. Groeseneken, and S. Decoutere, “Toward Understanding Positive Bias Temperature Instability in Fully Recessed-Gate GaN MISFETs,” IEEE Trans. Electron Devices, vol. 63, no. 5, pp. 1853–1859, May 2016, doi: 10.1109/TED.2016.2539341.
[11] J. He, M. Hua, Z. Zhang, and K. J. Chen, “Performance and VTH Stability in E-Mode GaN Fully Recessed MIS-FETs and Partially Recessed MIS-HEMTs With LPCVD-SiNx/PECVD-SiNx Gate Dielectric Stack,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3185–3191, Aug. 2018, doi: 10.1109/TED.2018.2850042.
[12] J. T. Asubar, S. Kawabata, H. Tokuda, A. Yamamoto, and M. Kasaaki, “Enhancement-Mode AlGaN/GaN MIS-HEMTs With High VTH and High IDmax Using Recessed-Structure With Regrown AlGaN Barrier,” IEEE Electron Device Lett., vol. 41, no. 5, pp. 693–696, May 2020, doi: 10.1109/LED.2020.2985091.
[13] J. Ma, G. Santoruvo, L. Nela, T. Wang, and E. Matioli, “Impact of Fin Width on Tri-Gate GaN MOSHEMTs,” IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 4068–4074, Sep. 2019, doi: 10.1109/TED.2019.2925859.
[14] M. Zhu, J. Ma, L. Nela, C. Erine, and E. Matioli, “High-Voltage Normally-off Recessed Tri-Gate GaN Power MOSFETs With Low on-Resistance,” IEEE Electron Device Lett., vol. 40, no. 8, pp. 1289–1292, Aug. 2019, doi: 10.1109/LED.2019.2922204.
[15] K. N. Huang, Y. C. Lin, J. H. Lee, C. C. Hsu, J. N. Yao, C. Y. Wu, C. H. Chien, E. Y. Chang, “Study of tri-gate AlGaN/GaN MOS-HEMTs for power application,” Micro and Nano Engineering, vol. 9, Aug. 2020, Art. no. 100073, doi: 10.1016/j.mne.2020.100073.
[16] M. Zhu, J. Ma, and E. Matioli, “Investigation of p-GaN tri-Gate normally-Off GaN Power MOSHEMTs,” 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, pp. 345-348, doi: 10.1109/ISPSD46842.2020.9170183.
[17] M. Zhu, C. Erine, J. Ma, M. S. Nikoo, P. Sohi, and E. Matioli, “P-GaN Tri-Gate MOS Structure for Normally-Off GaN Power Transistors,” IEEE Electron Device Lett., vol. 42, no. 1, pp. 82–85, Jan. 2021, doi: 10.1109/LED.2020.3037026.
[18] J. Y. Chang, H. E Hong and H. H. Yee, “Improved Characteristics of Reactive-Ion-Etching Damage for n-GaN Epitaxial Layers after Post-Etch Treatments, “The 5th Pacific Rim Conference on Lasers and Electro-Optics, Dec. 2003,” doi: 10.1109/CLEOPR.2003.1274787.
[19] Y. J. Yoon, J. H. Seo, M. S. Cho, H. S. Kang, C. H. Won, I. M. Kang, and J. H. Lee, “TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs,” Solid-State Electronics, vol. 124, pp. 54–57, Jul. 2016, doi: 10.1016/j.sse.2016.06.009.
[20] K. S. Im, “Mobility Fluctuations in a Normally-Off GaN MOSFET Using Tetramethylammonium Hydroxide Wet Etching,” IEEE Electron Device Lett., vol. 42, no. 1, pp. 18–21, Jan. 2021, doi: 10.1109/LED.2020.3035712.
[21] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001, doi: 10.1109/16.906435.
[22] D. Visalli, M. V. Hovea, P. Srivastavaa, D. Marcona, K. Geensa, X. Kanga, E. Vandenplasa, J. Viaenea, M. Leysa, K. Chenga, B. Sijmusa, S. Decouterea, and G. Borghsa, “GaN-on-Si For High-Voltage Applications,” ECS Trans., vol. 41, no. 8, pp. 101–112, Jan. 2011, doi: 10.1149/1.363148.
[23] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011, doi: 10.1109/LED.2011.2166052.
[24] B. Lu, E. Matioli, and T. Palacios, “Tri-Gate Normally-Off GaN Power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, Mar. 2012, doi: 10.1109/LED.2011.2179971.
[25] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, “600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1373–1375, Nov. 2013, doi: 10.1109/LED.2013.2279846.
[26] T. E. Hsieh, E. Y. Chang, Y. Z. Song, Y. C. Lin, H. C. Wang, S. C. Liu, S. Salahuddin, and C. C. Hu, “Gate Recessed Quasi-Normally OFF Al2O3/AlGaN/GaN MIS-HEMT With Low Threshold Voltage Hysteresis Using PEALD AlN Interfacial Passivation Layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 732–734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
[27] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, IEEE Electron Device Lett., vol. 36, no. 12, pp. 1287–1290, Dec. 2015, doi: 10.1109/LED.2015.2489228.
[28] M. Hua, Z. Zhang, J. Wei, J. Lei, G. Tang, K. Fu, Y. Cai, B. Zhang, and K. J. Chen, “Integration of LPCVD-SiNx Gate Dielectric with Recessed-gate E-mode GaN MIS-FETs: Toward High Performance, High Stability and Long TDDB Lifetime,” 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 10.4.1-10.4.4, doi: 10.1109/IEDM.2016.7838388.
[29] S. Huang, X. Liu, X. Wang, J. Zhang, Q. Bao, K. Wei, Y. Zheng, C. Zhao, H. Gao, Q. Sun, Z. Zhang, and K. J. Chen, Uniformity Normally-OFF GaN MIS-HEMTs Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1617–1620, Dec. 2016, doi: 10.1109/LED.2016.2617381.
[30] J. Gao, Y. Jin, Y. Hao, B. Xie, C. P. Wen, B. Shen, and M. Wang, “Gate-Recessed Normally OFF GaN MOSHEMT With High-Temperature Oxidation/Wet Etching Using LPCVD Si3N4 as the Mask,” IEEE Trans. Electron Devices, vol. 65, no. 5, pp. 1728–1733, May 2018, doi: 10.1109/TED.2018.2812215.
[31] J. H. Seo, Y. W. Jo, Y. J. Yoon, D. H. Son, C. H. Won, H. S. Jang, I. M. Kang, and J. H. Lee, “Al(In)N/GaN Fin-Type HEMT With Very-Low Leakage Current and Enhanced I –V Characteristic for Switching Applications,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 855–858, Jul. 2016, doi: 10.1109/LED.2016.2575040.
[32] X. Tan, X. Y. Zhou, H. Y. Guo, G. D. Gu, Y. G. Wang, X. B. Song, J. Y. Yin, Y. J. Lv, and Z. H. Feng, “Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al2O3 Gate Dielectric,” CHIN. PHYS. LETT., vol. 33, no. 9, pp. 098501-1–098501-4, Apr. 2016, doi: 10.1088/0256-307X/33/9/098501.
[33] R. Winter, J. Ahn, P. C. Mclntyre, and M. Eizenberg, “New method for determining flat-band voltage in high mobility semiconductors,” J. Vac. Sci. Technol. B, vol .31, no. 3, Apr. 2013, doi: 10.1116/1.4802478.
[34] H. M. Przewlocki, T. Gutt, and K. Piskorski, “The inflection point of capacitance-voltage, C(VG), characteristic and the flab-band voltage od metal-oxide-semiconductor structures,” J. Appl. Phys., vol. 115, no. 20, May 2014, doi: 10.1063/1.4880399.
[35] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique,” Bell Syst. Tech. J, vol. 46, pp. 1055-1133, 1967.
[36] S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. J. Chen, “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 193–195, Feb. 2013, doi: 10.1109/LED.2012.2229106.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明