博碩士論文 108521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:18.220.195.105
姓名 鄭儒宇(Ru-Yu Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
(Investigation on Wafer Warpage during Epitaxy of GaN High Electron Mobility Transistors on Si)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,矽基的氮化鋁鎵/氮化鎵高電子遷移率電晶體以高載子遷移率、耐壓高溫、高載子濃度以及寬能隙的優勢漸漸取代傳統矽元件。然而為了得到更好的氮化鎵品質就必須要克服矽基板與氮化鎵的晶格常數差、熱膨脹係數不同所產生的缺陷,例如:螺旋差排、刃差排,以及晶片翹曲與龜裂的問題。特別是當要提高元件的崩潰電壓時,磊晶層的厚度就需要增加,其晶片翹曲與龜裂問題就更加嚴重。為了解決上述問題。此研究選用超晶格做為氮化鎵緩衝層,因超晶格緩衝層不僅僅能夠降低磊晶層中的差排密度,也具有控制晶片翹曲的功能,能夠達到更高的垂直崩潰電壓與氮化鎵薄膜品質。
本論文的研究主題是探討有機金屬氣相磊晶成長氮化鋁鎵/氮化鎵高電子遷移率電晶體(AlGaN/GaN HEMT)於矽基板之過程中,磊晶片翹曲的機制與控制方法。本研究藉由不同超晶格緩衝層的結構,包括鋁成分、厚度與對數,來控制磊晶層曲率變化,以避免磊晶薄膜龜裂並降低晶片翹曲。實驗結果與Stoney formula數學模型之結果大致相符;另亦與商用STREEM軟體所模擬出來的結果比較,發現緩衝層中超晶格的週期數與其組成亦須在應力控制時列入考量。
透過此研究所得之模型與設計原則,為獲得更大的壓縮應力,將超晶格的組成從Al0.24Ga0.76N 11 nm/AlN 5.4 nm 優化成Al0.3Ga0.7N 14 nm/AlN 5.2 nm,並將超晶格週期數從30對減少至20對,其中透過Stoney formula所計算κ的總和從-0.58 km-1增加至-0.87 km-1。此外,優化後的實驗曲率從每對中-0.24 km-1變為-0.37 km-1,這代表著優化後的超晶格緩衝層產生比原始緩衝層更高的壓應力。最後在不犧牲晶圓翹區程度下,成功地減少磊晶成本並將磊晶片邊緣龜裂範圍從3-5 mm減少至2-3 mm,有效增加晶圓可用面積。
摘要(英) In recent years, wide bandgap AlGaN/GaN-on-Silicon high electron mobility transistors (HEMTs) have gradually replaced traditional silicon devices because of their high carrier mobility, high breakdown voltage, high temperature operation and high carrier concentration. However, the performance of GaN HEMTs is still far from its theoretical limits, mostly because of the unavailability of native GaN substrate, resulting in high defect density in the epilayer, such as threading dislocation density, which is typically above 109 cm-2. Wafer bow and/or cracking due to large lattice and thermal mismatch between the silicon substrate and the GaN epilayer is still a concern that needs to be addressed. Additionally, wafer bow could be even serious when the total thickness of the epilayer increases beyond 5 m, which renders the vertical breakdown voltage of the device. Stress relief buffer layer beneath the GaN buffer is often used to minimize the strain caused by the lattice mismatch between the epilayers. Several stress relief buffer layers have been proposed in the past. Nonetheless, graded AlGaN, superlattice (SL) buffers or even the combination of both is most commonly used in modern GaN-on-Si heterostructures. Superlattice buffers in this regards may provide more degree of freedoms, which not only reduces the density of dislocation in the epitaxial layer, but also has the ability to control the wafer bow precisely, resulting in thicker epilayer to achieve higher vertical breakdown voltage. However, the design of superlattice buffer is not straightforward as it involves a number of design parameters, such as the layer composition, thickness, superlattice periods, and position in the buffer. Therefore, it is still a research field of interest.
The present study aims to explore the design and physics of stress control mechanism of AlGaN/GaN HEMTs on silicon using superlattice stress relief layers. To achieve this, we adopted different superlattice buffer layers. For example, we used different aluminum compositions, thicknesses, and periods. The results are consistent with the mathematical Stoney formula. In addition, when compared to the simulated values obtained by a commercial software package, STREEM, we found that the number of SL periods and composition should also be taken into account when controlling the stress during buffer layer growth. Further, in order to allow the superlattice buffer layer to generate more compressive stress through the above method and to maintain the equivalent aluminum composition of the superlattice buffer layer at 50%, the composition was changed from Al0.24Ga0.76N 11 nm/AlN 5.4 to Al0.3Ga0.7N 14 nm/AlN 5.2 nm. The corresponding sum of curvature (κ) calculated from the Stoney formula increases from -0.58 km-1 to -0.87 km-1. Also, the experimental curvature changes from -0.24 km-1 to -0.37 km-1 in each pair, which means that the superlattice buffer layer generates a higher compressive stress than the original one.
In conclusion, our results demonstrated that the SL composition, thickness, and the number of periods need to be optimized to achieve crack-free thick GaN layers on Si. By applying the model developed by the present study, decreasing the SL period from 30 to 20 periods, and optimizing the composition, the edge cracking range of the epilayer on a 150 mm Si substrate could be successfully reduced from 3-5 mm to 2-3 mm, which increases the useable area of the wafer.
關鍵字(中) ★ 磊晶
★ 應力
★ 超晶格
關鍵字(英)
論文目次 目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 VI
表目錄 IX
第一章 導論 1
1.1 前言 1
1.2 氮化鎵材料介紹 3
1.2.1 氮化鎵的優勢 3
1.2.2 氮化鎵的晶體特性 5
1.2.3 氮化鎵磊晶於矽基板之介紹 7
1.2.4 氮化鋁鎵/氮化鎵超晶格緩衝層研究文獻回顧 9
1.3 研究動機與論文架構 11
第二章 儀器與磊晶結構介紹 12
2.1研究設備與磊晶片製作 12
2.1.1 研究設備介紹 12
2.1.2 磊晶片的製作方法 16
2.2 超晶格緩衝層磊晶結構介紹 17
2.2.1 磊晶結構Sample A 17
2.2.2 磊晶結構Sample B 18
2.2.3 磊晶結構Sample C 18
2.3 應力及曲率計算公式 20
2.3.1 應力與應變 20
2.3.2 Stoney formula 22
2.4 STREEM軟體 23
第三章 超晶格緩衝層曲率模擬與分析 26
3.1前言 26
3.2 超晶格緩衝層曲率變化與模擬之分析 29
3.2.1 Stoney formula分析超晶格緩衝層之曲率 29
3.2.2 超晶格曲率模擬與Stoney formula驗證 32
3.2.3 超晶格氮化鋁鎵成分與對數變化之曲率探討 36
3.2.4 超晶格氮化鋁厚度變化之曲率探討 41
3.3 實驗驗證 46
第四章 結論與未來展望 51
參考文獻 53
參考文獻 [1] Y. Zhou et al., “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,”. Solid-State Electronics, 50(11–12), 1744–1747, 2006.
[2] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, “Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[3] O. Ambacher et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, “Journal of Applied Physics, 87(1), 334–344, 2000.
[4] I. Y. Jung et al., “Evolution of mechanically formed bow due to surface waviness and residual stress difference on sapphire (0001) substrate, ”Journal of Materials Processing Technology, 269, 102–108, 2019.
[5] S. Binari et al., “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, 90(6), 1048–1058, 2002.
[6] N. Kaminski et al., “SiC and, GaN devices – wide bandgap is not all the same,” IET Circuits Devices Syst, vol. 8, iss. 3, pp. 227–236, Jan., 2014.
[7] E. Feltin et al., “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Applied Physics Letters, 79(20), 3230–3232, 2001.
[8] S. Selvaraj et al., “Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers,” IEEE Electron Device Letters, 30(6), 587–589, 2009.
[9] A. Sztein et al., “Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties,” Applied Physics Letters, 104(4), 042106, 2014.
[10] I. Sanyal et al., “Enhanced electrical properties of AlInN/AlN/GaN heterostructure using AlxGa1-xN/AlyGa1-yN superlattice,” IEEE Compound Semiconductor Week (CSW), pp. 1-2, 2019.
[11] A. Tajalli et al., “High breakdown voltage and low buffer trapping in superlattice GaN-on-silicon heterostructures for high voltage applications,” Materials, 13(19), 4271,2020.
[12] L. Heuken et al., “Analysis of an AlGaN/AlN super-lattice buffer concept for 650-V low-dispersion and high-reliability GaN HEMTs,” IEEE Transactions on Electron Devices, 67(3), 1113–1119, 2020.
[13] S. Liu et al., “ AlN/GaN superlattice channel HEMTs on silicon substrate, ” IEEE Transactions on Electron Devices, 68(7), 3296–3301, 2021.
[14]J. Su et al., “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor,” Journal of Materials Research, 30(19), 2846-2858,2015.
[15] A. Krost et al., “GaN-based optoelectronics on silicon substrates,” Materials Science and Engineering: B, 93(1–3), 77–84, 2002.
[16] I. Y. Jung et al., “Evolution of mechanically formed bow due to surface waviness and residual stress difference on sapphire (0001) substrate,” Journal of Materials Processing Technology, 269, 102–108, 2019.
[17] S. W. Kaun et al., “Effects of threading dislocation density on the gate leakage of AlGaN/GaN Heterostructures for high electron mobility transistors,” Applied Physics Express, 4(2), 024101, 2011.
[18] I. B. Rowena et al., “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Letters, 32(11), 1534–1536, 2011.
[19] The Efficient Enginee., (2019, Apr. 11). “ Understanding Poisson’s Ratio“, Available: https://www.youtube.com/watch?v=tuOlM3P7ygA&t=8s
[20] F. Wright., “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, “Journal of Applied Physics, 82(6), 2833–2839,1997.
[21] L. B. Freund et al., “Thin Film Materials: Stress, Defect Formation and Surface Evolution“ 1st ed. Cambridge University Press, 2009.
[22] STR Group, Inc. (2020, December 19). Contact. STR Software for Modeling of Crystal Growth, Epitaxy, and Semiconductor Devices. Available: https://www.str-soft.com/contact/
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2021-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明