博碩士論文 108323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.141.21.18
姓名 胡庭墉(Ting-Yung Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂基金屬玻璃薄膜對鎂合金ZK60基材之機械性質與抗腐蝕性提升之研究
(Improvement of Mechanical Properties and Corrosion Resistance of ZK60 by coating Mg-based Metallic Glass Thin Film)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 近年來,可降解材料的生醫骨釘及縫合鉚釘等骨科植入物,相當的受矚目,尤其是鎂基金屬玻璃,因為與其他傳統生醫材料或是鎂合金相比,其具有良好的機械性能、與人體骨骼相似的楊氏係數、良好生物相容性。金屬玻璃的特點是非結晶結構且沒有晶界,可以有效降低材料的分解速率,因此適合當作骨科植入物。鑒於前人的研究,鎂基金屬玻璃由於缺乏韌性的特性影響了後續加工與應用,因此,本研究將鎂基金屬玻璃以薄膜形式鍍覆在ZK60基材表面來改善機械性質、抗腐蝕性和生物相容性。
結果顯示利用直流真空濺鍍機可成功將鎂基金屬玻璃鍍膜鍍附於ZK60上,鍍覆的鎂基金屬玻璃薄膜結構仍維持非晶態,且根據膠帶附著力測試結果顯示,鎂基金屬玻璃薄膜之附著力為5B (0 % 的薄膜從基材上剝落),透過奈米壓痕測試,可以得知鎂基金屬玻璃薄膜的硬度為240 Hv (約為ZK60的2倍);藉由三點抗彎試驗可以觀察到,膜厚1000 nm鎂基金屬玻璃鍍層能有效提升抗彎強度,其抗彎強度可以從ZK60基材216 MPa提升至254 MPa,由此推論,鎂基金屬玻璃硬度較高,因此能提升抗彎強度,而在不同功率下膜厚1000 nm鎂基金屬玻璃鍍層,具有相同的抗彎強度。另外透過電化學腐蝕試驗(動態極化曲線)可得到功率30W的鎂基金屬玻璃薄膜有最好的抗腐蝕能力,其腐蝕電流為1.51 × 10-7 A/cm2是ZK60的4.88 × 10-6 A/cm2的 3/100,相對的大大提升了抗腐蝕能力,另外在功率30W的鎂基金屬玻璃薄膜可以發現有較大的鈍化區,因此,由電化學腐蝕試驗的結果可看出鎂基金屬玻璃薄膜可以提供保護ZK60基材更優越的耐腐蝕性。
摘要(英) In recent years, biomedical bone nails and suture rivets and other orthopedic implants made of biodegradable materials have attracted considerable attention, especially magnesium-based metallic glass. Because Mg-based metallic glass has good mechanical properties, similar Young′s modulus to human bones, and good biocompatibility compared with the other traditional biomedical materials or magnesium alloys. Bulk metallic glass material has no grain boundaries which can decrease the degradation rate of the implant material in comparison with Mg alloys and suitable for orthopedic implants.
However, the metallic glass is lack of toughness limited the workability via machining and application. Therefore, this study chooses magnesium alloy ZK60 as the base material. The ZK60 plates coated with 1000 nm metallic glass thin film (MGTF) by DC-sputtering to improve the mechanical properties, corrosion resistance and biocompatibility.
The results show that the structure of the coated Mg-based MGTF is amorphous state by DC-sputtering. According to the tape adhesion test results, the adhesion of the Mg-based MGTF is 5B class (0% of the film peels off the base material). Through the Nanoindentation test, it can be observed that the hardness of the Mg-based MGTF is 240 Hv (about twice that of ZK60). The results of 3-point bending test show that the Mg-based MGTF can effectively improve the bending strength. When the thin film thickness is about 1000 nm, the bending strength can be increased from 216 MPa to 254 MPa compare with the ZK60 base materials. Because MGTF has a higher hardness, it can increase the bending strength. And the Mg-based MGTF thickness of 1000 nm under different powers has the same bending strength. In addition, through the electrochemical corrosion test (dynamic polarization curve), the 30W Mg-based MGTF has the best corrosion resistance, and its corrosion current is 1.51 × 10-7 A/cm2 relative to ZK60′s 4.88 × 10-6 A/cm2 is about 3/100 times. When corrosion occurs, the corrosion rate will be much smaller than that of ZK60, and the 30W Mg-based MGTF can find a larger passivation area. The results of the electrochemical corrosion test show that the Mg-based MGTF can provide better corrosion resistance to protect the ZK60 substrate.
關鍵字(中) ★ 金屬玻璃薄膜
★ 機械性質
★ 抗腐蝕性
★ 生物相容性
★ 生物降解
關鍵字(英) ★ metallic glass thin film
★ mechanical properties
★ corrosion resistance
★ biocompatibility
★ biodegradation
論文目次 摘要 i
Abstract ii
致謝 iv
總目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1-1 緒論 1
1-2 研究動機 2
1-3 研究目的 2
第二章 理論基礎 4
2-1金屬玻璃之特性 4
2-2金屬玻璃之發展歷程 5
2-3如何設計與製作金屬玻璃 7
2-3-1實驗歸納法則 7
2-3-2金屬玻璃合金之製成 8
2-4金屬玻璃合金之特性 11
2-4-1機械性質 11
2-4-2耐腐蝕性 11
2-4-3抗菌性 12
2-4-4磁性質 12
2-5 鎂基金屬玻璃及其複材之沿革 12
2-6金屬玻璃薄膜 13
2-6-1濺鍍法製作金屬玻璃薄膜(sputtering) [47] 13
2-6-2金屬玻璃薄膜之抗菌性 14
2-6-3金屬玻璃薄膜應用於醫療用具 14
2-6-4金屬玻璃薄膜提升疲勞性質 15
2.7 薄膜的成長(Thin Film Growth) 15
2.8彎曲破壞[52] 15
2-9電化學腐蝕[53] 16
第三章 實驗方法 25
3-1鎂合金(ZK60)基板之準備 25
3-1-1鎂合金(ZK60)抗彎試片製作 25
3-1-2鎂合金(ZK60)腐蝕試片製作 25
3-2鎂基靶材之製備 25
3-2-1成份配置 25
3-2-2傾倒式真空感應熔煉法 26
3-3鎂基金屬玻璃薄膜製備 26
3-3-1抗彎試片製作 27
3-3-2金屬玻璃薄膜腐蝕試片製作 27
3-4金屬玻璃薄膜之基礎性質分析 27
3-4-1薄膜厚度分析 27
3-4-2附著力測試 27
3-4-3奈米壓痕測試 28
3-5機械性質分析 28
3-5-1三點彎曲試驗(3-point bending) 28
3-6微觀結構分析 29
3-6-1微結構分析(低掠角X光繞射) 29
3-6-2原子力顯微鏡分析 30
3-6-3成分分析 30
3-6-4場發式電子顯微鏡 30
3-6-5穿透式電子顯微鏡分析 31
3-7電化學腐蝕試驗(動態極化) 31
第四章 實驗結果 45
4-1鎂基金屬玻璃薄膜之基礎性質分析 45
4-1-1成分分析 45
4-1-2金屬玻璃薄膜結構分析 45
4-1-3 AFM表面粗糙度分析 46
4-1-4金屬玻璃薄膜厚度觀察 46
4-1-5金屬玻璃薄膜之硬度與楊氏模數 47
4-1-6金屬玻璃薄膜附著力 47
4-2三點彎曲試驗 48
4-3電化學腐蝕試驗 49
4-3-1電化學腐蝕之動態極化曲線分析 49
4-3-2電化學腐蝕後之表面形貌分析 50
第五章 結論 62
第六章 參考文獻 63
參考文獻 [1]. D.W. Hoeppner and V. Chandrasekaran, “Fretting in orthopaedic implants: a review”, Wear, 173, 1994, pp.189-197.
[2]. D.F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, vol.25, no.4, 1980, pp.611-636.
[3]. H. Li, Y. Zheng, L. Qin, “Progress of biodegradable metals”, Progress in Natural Science: Materials International, 24, 2014, pp.414-422.
[4]. J. Wang, S. Huang, Y. Li, Y. Wei, S. Guo, F. Pan, “Ultrahigh strength MgZnCa eutectic alloy/Fe particle composites with excellent plasticity”, Materials Letters, vol.137, 2014, pp.139-142.
[5]. H.F. Li and Y.F. Zheng, “Recent advances in bulk metallic glasses for biomedical applications”, Acta Biomaterialia, 36, 2016, pp.1-20.
[6]. D.M. Miskovic, K. Pohl, N. Birbilis, K.J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg–Zn–Ca ternary metallic glasses”, Journal of Materials Chemistry B, 4, 2016, pp.2679-2690.
[7]. N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim and H.Y. Kim, “Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures”, Materials, 2014, pp.1271-1295.
[8]. G. P. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar, G. L. Goswami, “Structure relaxation in metallic glasses”, Materials Science and Engineering: A, Vol. 304-306, 2001, pp. 499-504.
[9]. 吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[10]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[11]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, pp. 37.
[12]. A. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, pp.109
[13]. W. Klement, R. Willens and P. Duwez, “Non-crystalline structure in solidified Gold-Silicon alloys”, Nature, Vol. 187, 1960, pp. 869-870.
[14]. D. Turnbull, “Phase Changes”, Solid State Physics, vol.3, 1956, pp.225-306.
[15]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol.35, 1974, pp.1-10.
[16]. D.R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol.7, 1966, pp.159-168.
[17]. H.A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol.17, 1976, pp.159-173.
[18]. H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[19]. M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[20]. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer-Link, Inc., Berlin Heidelberg, 1995, p.159.
[21]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science & Engineering, A, vol.226-228, 1997, pp.357-363.
[22]. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Materials Transactions JIM, vol. 32-7, 1991, pp. 609-616.
[23]. A. Inoue, T Nakamura, N. Nishiyama and T. Masumoto, “Development of Mg based amorphous alloys with higher amounts of rare earth elements”, Materials Transactions JIM, vol.33, 1992, pp.937-945.
[24]. H.C. Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp.1039-1045.
[25]. A. Inoue, B. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties”, Nature materials, Vol. 2, 2003, pp. 661-663.
[26]. H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915.
[27]. D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[28]. B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature materials, Vol. 8, 2009, pp. 887-891.
[29]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[30]. R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991.
[31]. W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[32]. K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969.
[33]. H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[34]. A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[35]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, Vol. 284, 2001, pp. 134-138.
[36]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年。
[37]. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications, Institute for Material Research”, Tohoku University, Sendai, Japan, 1999.
[38]. C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[39]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[40]. A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[41]. L. J. Chang, J. S. C. Jang, B. C. Yang and J. C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0 - 10) amorphous alloys”, Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 221-224.
[42]. L. J. Chang, G. R. Fang, J. S. C. Jang, I. S. Lee, J. C. Huang and C. Y. A. Tsao, “Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nanoZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, Vol. 351, 2007, pp. 103-108.
[43]. J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 011930.
[44]. P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012.
[45]. M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[46]. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S. C. Jang, Y. Gao, P. K. Liaw, “Thin-film metallic glasses for substrate fatigue-property improvements”, Thin Solid Films, Vol. 561, 2014, pp. 2-27.
[47]. 李正中,薄膜光學與鍍膜技術第二版,藝軒圖書文具有限公司,2001年。
[48]. H. W. Chen, K. C. Hsu, Y. C. Chan, J. G. Duh, J. W. Lee, J. S. C. Jang, G. J. Chen, “Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass”, Thin Solid Films, Vol. 561, 2014, pp. 98-101.
[49]. P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, J. P. Chu, J. C. Huang, “Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating”, Intermetallics, Vol. 31, 2012, pp. 127-131.
[50]. P. H. Tsai, J. B. Li, Y. Z. Chang, H. C. Lin, J. S. C. Jang, J. P. Chu, J. W. Lee, P. K. Liaw, “Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating”, Thin Solid Films, Vol. 561, 2014, pp. 28-32.
[51]. M. Ohring, The Materials Science of Thin Film, Academic Press, New York, 1992, p.197.
[52]. 黃振賢、黃錫鐃,材料實驗(彩色版),新文京開發出版有限公司,2004年。
[53]. D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall, Upper Saddle River, NJ 07458, 1996.
[54]. D3359-09, A., 2021. ASTM D3359 - 09 Standard Test Methods for Measuring Adhesion by Tape Test. [online] Astm.org. Available at: <https://www.astm.org/DATABASE.CART/HISTORICAL/D3359-09.htm> [Accessed 8 June 2021].
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明