博碩士論文 108323089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.135.204.31
姓名 蔡欣芮(Hsin-Jui Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以兩張二維X光影像重建三維心血管模型的研究
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 冠狀動脈血管攝影術是一種為了輔助心導管手術,以
X光拍攝心血管的一種成像技
術,手術 過程中醫生會拍攝大量 X光片,通常兩張正交 (AP、 LA方向 )的二維影像,透
過兩張影像的位置關係以及經驗判斷,來確定 導管在每個時候的位置是否正確,有時為
了得到能清楚顯示血管結構的影像,必須要多次拍攝得到適當的影像。
為了能提供醫師更直觀的
血管流向 資訊,並減少 X光的拍攝,在本研究中希望能建
立一套以 兩張二 維 X光 影像重建三維心臟血管模型的演算法,包含影像的前處理、取得
兩張影像的對 應 點的方法 最後計 算出三維空間座標。影像前處理的部分,目的是為了將
血管影像從背景中分割出來,其中包含去除雜訊、 不均勻光線校正 與 影像強化 對影像
中血管區域細線化找出血管中心線, 再使用 中心線 分岔點 與 基於 對極幾何 的方法 找出對
應點, 最後計 算出三維模型在空間中的位 置。 重建出的三維模型可提供心血管每個分支
的走向與長度,協助醫師 了解 導管 需 前進的方向和距離 ,降低原本手術過程中須不斷拍
攝 X光影像確認導管位置的需求 。
在驗證重建方法實驗中,使用
2D C-arm拍攝自製的心血管假體,獲得兩張 X光影
像進行重建,並 以 手持驗證工具驗證重建出的空間位置的正確性,重建位置誤差約為
1.84mm,標準差 0.74mm。
摘要(英) Coronary angiography is an imaging technique that uses X-rays to photograph the cardiovascular system to assist in cardiac catheterization. During the operation, the doctor will take a large number of X-ray images, which are usually in two directions ( AP/LA direction). Through the positional relationship of the two images and empirical judgments, it is determined whether the catheter position is correct at each time. Sometimes in order to obtain an image that clearly shows the structure of the blood vessel, it is necessary to take multiple shots to obtain an appropriate image.
To provide physicians with more intuitive blood vessel flow information and reduce X-ray shooting, in this study, we hope to establish an algorithm for reconstructing a three-dimensional heart vessel model from two two-dimensional X-ray images. The algorithm includes the pre-processing of the image, the method to obtain the corresponding points of the two images, and finally calculate the three-dimensional space coordinates. The purpose of the image pre-processing part is to segment the blood vessel image from the background, including noise removal, uneven light calibration, and enhancement filtering; Finding the centerlines of the vessel by image skeleton then can help to find the bifurcation points of the centerlines. Then calculate the corresponding point based on the epipolar geometry and finally measure the position of the three-dimensional model in space. In the experiment of verifying the reconstruction method, 2D C-arm was used to shoot the self-made cardiovascular prosthesis, two X-ray images were obtained for reconstruction, and the verification tool was held to verify the correctness of the reconstructed spatial position. The reconstruction position error is about 1.84mm, and the standard deviation is 0.74mm.
關鍵字(中) ★ 冠狀動脈血管造影
★ 血管分割
★ 三維重建
關鍵字(英) ★ Coronary Angiography
★ Vessel Segmentation
★ 3D Reconstruction
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 研究內容簡介 5
第二章 研究方法 6
2-1 三維模型的重建方法 6
2-1-1 獲得影像與影像分割 7
2-1-2 三維重建方法 9
2-1-3 基於對極幾何計算空間位置 19
2-2 血管分割的方法 22
第三章 實驗結果與討論 29
3-1 自定義模型重建 29
3-2 十字金屬板重建 31
3-3 血管假體重建 35
第四章 結論與未來展望 43
參考文獻 44
附錄一 47
參考文獻 [1] 衛生福利部 . "108年國人死因統計結果 ." https://www.mohw.gov.tw/cp-16-54482-1.html
[2] S. Hosseinian and H. Arefi, "3d Reconstruction from Multi-View Medical X-Ray Images – Review and Evaluation of Existing Methods," ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W5, pp. 319-326, 2015, doi: 10.5194/isprsarchives-XL-1-W5-319-2015.
[3] 陳怡君 . "腦部磁振造影血管攝影 ." https://www1.cgmh.org.tw/branch/lnk/2016/article2.aspx?id=221
[4] J. A. Maintz and M. A. Viergever, "An overview of medical image registration methods," in Symposium of the Belgian hospital physicists association (SBPH/BVZF), 1996, vol. 12, no. V: Citeseer, pp. 1-22.
[5] J. Wang and T. J. Blackburn, "The AAPM/RSNA Physics Tutorial for Residents," RadioGraphics, vol. 20, no. 5, pp. 1471-1477, 2000, doi: 10.1148/radiographics.20.5.g00se181471.
[6] 吳吉春 , "基於 C-arm影像的手術導引定位 ," 機械工程學系 , 國立中央大學 , 2012年
[7] C. Kirbas and F. Quek, "A review of vessel extraction techniques and algorithms," ACM Computing Surveys (CSUR), vol. 36, no. 2, pp. 81-121, 2004.
[8] K. A. S. H. Kulathilake, "Improvement of coronary angiography for quantitative coronary analysis by using a computer vision technique," 2017.
[9] S. Yang et al., "Deep learning segmentation of major vessels in X-ray coronary angiography," Sci Rep, vol. 9, no. 1, p. 16897, Nov 15 2019, doi: 10.1038/s41598-019-53254-7.
[10] A. Ajam, A. A. Aziz, V. S. Asirvadam, A. S. Muda, I. Faye, and S. J. Safdar Gardezi, "A Review on Segmentation and Modeling of Cerebral Vasculature for Surgical Planning," IEEE Access, vol. 5, pp. 15222-15240, 2017, doi: 10.1109/access.2017.2718590.
[11] S. J. Chen and J. D. Carroll, "3-D reconstruction of coronary arterial tree to optimize angiographic visualization," IEEE transactions on medical imaging, vol. 19, no. 4, pp. 318-336, 2000.
[12] C. Pellot, A. Herment, M. Sigelle, P. Horain, H. Maître, and P. Peronneau, "A 3D reconstruction of vascular structures from two X-ray angiograms using an adapted simulated annealing algorithm," IEEE transactions on medical imaging, vol. 13, no. 1, pp. 48-60, 1994.
[13] A. Zifan, M. Gavaises, P. Liatsis, I.Pantos, "A new method of three-dimensional
45
coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography," Catheter Cardiovasc Interv, vol. 71, no. 1, pp. 28-43, Jan 1 2008, doi: 10.1002/ccd.21414.
[14] W. Schreiner, F. Neumann, M. Neumann, A. End, S. M. Roedler, and S. Aharinejad, "The influence of optimization target selection on the structure of arterial tree models generated by constrained constructive optimization," Journal of General Physiology, vol. 106, no. 4, pp. 583-599, 1995, doi: 10.1085/jgp.106.4.583.
[15] J. Alastruey, K. H. Parker, J. Peiró, S. M. Byrd, and S. J. Sherwin, "Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows," Journal of Biomechanics, vol. 40, no. 8, pp. 1794-1805, 2007, doi: 10.1016/j.jbiomech.2006.07.008.
[16] P. Perdikaris, L. Grinberg, and G. E. Karniadakis, "Multiscale modeling and simulation of brain blood flow," Physics of Fluids, vol. 28, no. 2, p. 021304, 2016, doi: 10.1063/1.4941315.
[17] K. Kolev and D. Cremers, "Integration of Multiview Stereo and Silhouettes Via Convex Functionals on Convex Domains," in Computer Vision – ECCV 2008, (Lecture Notes in Computer Science, 2008, ch. Chapter 57, pp. 752-765.
[18] T. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digital patterns," Communications of the ACM, vol. 27, no. 3, pp. 236-239, 1984.
[19] R. Bansal, P. Sehgal, and P. Bedi, "Minutiae extraction from fingerprint images-a review," arXiv preprint arXiv:1201.1422, 2011.
[20] J. H. Challis, "Quaternions as a solution to determining the angular kinematics of human movement," BMC Biomedical Engineering, vol. 2, no. 1, 2020, doi: 10.1186/s42490-020-00039-z.
[21] Z. Zhang, "Determining the Epipolar Geometry and its Uncertainty: A Review," International Journal of Computer Vision, vol. 27, no. 2, pp. 161-195, 1998, doi: 10.1023/a:1007941100561.
[22] A. M. Aibinu, M. I. Iqbal, M. Nilsson, and M.-J. E. Salami, "A new method of correcting uneven illumination problem in fundus image," 2007.
[23] M. D. Vlachos and E. S. Dermatas, "Non-uniform illumination correction in infrared images based on a modified fuzzy c-means algorithm," Journal of Biomedical Graphics and Computing, vol. 3, no. 1, 2012, doi: 10.5430/jbgc.v3n1p6.
[24] J. Zhu, B. Liu, and S. C. Schwartz, "General illumination correction and its application to face normalization," in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP′03). 2003, vol. 3: IEEE, pp. III-133.
[25] M. Agarwal and R. Mahajan, "Medical Images Contrast Enhancement using Quad Weighted Histogram Equalization with Adaptive Gama Correction and Homomorphic Filtering," Procedia Computer Science, vol. 115, pp. 509-517, 2017,
46
doi: 10.1016/j.procs.2017.09.107.
[26] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, "Multiscale vessel enhancement filtering," in International conference on medical image computing and computer-assisted intervention, 1998: Springer, pp. 130-137.
[27] P. Anupama and S. Nandyal, "Blood vessel segmentation using hessian matrix for diabetic retinopathy detection," in 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2017: IEEE, pp. 1-5.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明