參考文獻 |
[1] Luca. Aluigi, Domenico Pepe, Federico Alimenti, and Domenico Zito, “K-Band SiGe system-on-chip radiometric receiver for remote sensing of the atmosphere,” IEEE Transaction on Circuits and Systems, vol. 64, no. 12, pp. 3025, Dec. 2017.
[2] A. Tang, T. Reck, R. Shu1, L. Samoska, Yangyho Kim Y. Ye, Q. Gu, B.J. Drouin, J. Truettel, R. Al Hadi, Y. Xu, S. Sarkozy, R. Lai, M-C F. Chang & Imran Mehdi, “A W-Band 65nm CMOS/InP-Hybrid radiometer & passive Imager”, IEEE Conference, 2016.
[3] Jui-Chih Kao, Kun-You Lin, Chau-Ching Chiong, Chu-Yun Peng, and Huei Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Transaction on Circuits and Systems, vol. 62, no. 7, pp. 1506, July. 2014.
[4] K. Phan, C. Mai, S. Lee and C. Huynh, "A Ka-band GaN high power amplifier," 2019 International Symposium on Electrical and Electronics Engineering (ISEE), 2019.
[5] C. Potier, S. Piotrowicz, C. Chang, O. Patard, L. Trinh-Xuan, J. Gruenenpuett, P. Gamarra, P. Altuntas, E. Chartier, J-C Jacquet, C. Lacam, N. Michel, C. Dua, M. Oualli, S.L. Delage, “10W Ka-band MMIC power amplifiers based on InAlGaN/GaN HEMT technology,” IEEE European Microwave Conference, 2019.
[6] J. Kamioka, Y. Tarui, Y. Kamo and S. Shinjo, "54% PAE, 70-W X-Band GaN MMIC power amplifier with individual source via structure," IEEE Microwave and Wireless Components Letters, vol. 30, no. 12, pp. 1149-1152, Dec. 2020.
[7] M. Sato et al., "InP-HEMT MMICs for passive millimeter-wave imaging sensors," 2008 20th International Conference on Indium Phosphide and Related Materials, pp. 1-4, 2008.
[8] J. W. May and G. M. Rebeiz, "Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1420-1430, May 2010.
[9] Masaru SATO, Tatsuya HIROSE and Koji MIZUNO, “Advanced MMIC receiver for 94-GHz band passive millimeter-wave imager,” IEICE TRANS. ELECTRON., vol. E92, no. 9, Sep. 2009.
[10] H. Yang, J. Tsai, T. Huang and H. Wang, "Analysis of a new 33–58-GHz doubly balanced drain mixer in 90-nm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1057-1068, April 2012.
[11] J. Chen, C. Kuo, Y. Hsin and H. Wang, "A 15-50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology, " IEEE MTT-S International Microwave Symposium, pp. 784-787, 2010.
[12] C. Lin, H. Lin, C. Lin, Y. Lai, C. Lin and Y. Wang, "A 16–44 GHz compact doubly balanced monolithic ring mixer," IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 620-622, Sept. 2008.
[13] Y. Lin, C. Lu and Y. Wang, "A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs," IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 495-497, Sept. 2013.
[14] C. Chen, Y. Lin, Y. Chen, C. Chiong and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applications," IEEE International Microwave Symposium, pp. 686-689, 2018.
[15] I. Ju, H. Ji and I. Yom, "Ku-band GaAs MMIC high power amplifier with high efficiency and broadband," IEEE Conference on Microwave Techniques, pp. 1-4, Apr. 2015.
[16] M. M. Assefzadeh and A. Babakhani, "Multi-order transmission line-radial stub networks for broadband impedance matching and power combining in a watt-level silicon power amplifier," Wireless and Microwave Circuits and Systems ,pp. 1-3, Sept 2018.
[17] L. A. Samoska et al., "A W-Band spatial power-combining amplifier using GaN MMICs," European Microwave Conference, pp. 1349-1352, Sept. 2018.
[18] Q. Lin et al., "A 2–20-GHz 10-W high-efficiency GaN power amplifier using reactive matching technique," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3148-3158, July 2020.
[19] Y. Chang, B. Lu, Y. Wang and H. Wang, "A Ka-band stacked power amplifier with 24.8-dBm output power and 24.3% PAE in 65-nm CMOS technology," IEEE MTT-S International Microwave Symposium, pp. 316-319, June 2019.
[20] D. Manente, F. Padovan, D. Seebacher, M. Bassi and A. Bevilacqua, "A 28-GHz stacked power amplifier with 20.7-dBm output P1dB in 28-nm Bulk CMOS," IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, July 2020.
[21] Y. Cao, H. Lyu and K. Chen, "Wideband Doherty power amplifier in quasi-balanced configuration," IEEE Wireless and Microwave Technology Conference, pp. 1-4, April 2019.
[22] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, Nov. 2016.
[23] Y. Lin, J. Ji, T. Chien, H. Chang and Y. Wang, "A Ka-band 25-dBm output power high efficiency monolithic Doherty power amplifier in 0.15-μm GaAs E-mode pHEMT process," IEEE Asia Pacific Microwave Conference, pp. 984-987, Nov. 2017.
[24] E. Turkmen, B. Cetindogan, M. Yazici and Y. Gurbuz, "Design and characterization of a D-band SiGe HBT front-end for Dicke radiometers," IEEE Sensors Journal, vol. 20, no. 9, pp. 4694-4703, May 2020.
[25] N. Moon and Y. Kim, "Temperature drift compensation using multiple linear regression for a W-Band total power radiometer," IEEE Sensors Journal, vol. 15, no. 8, pp. 4612-4620, Aug. 2015.
[26] N. Moon and Y. Kim, "Optimized thermal compensation method using clustering and drifted response stability for total power radiometer calibration," IEEE Sensors Journal, vol. 17, no. 5, pp. 1269-1276, March 2017.
[27] L. Zhou, C. Wang, Z. Chen and P. Heydari, "A W-band CMOS receiver chipset for millimeter-wave radiometer systems," IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 378-391, Feb. 2011.
[28] F. Alimenti, G. Tasselli, C. Botteron, P. Farine and C. Enz, "Avalanche microwave noise sources in commercial 90-nm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1409-1418, May 2016.
[29] K. Wu, K. Lai, R. Hu and C. Chang, "DC-50GHz wideband phase-compensated 90nm-CMOS active balun design," Asia-Pacific Microwave Conference, pp. 1-3, Dec. 2015.
[30] H. Zhang, G. Qian, W. Zhong and C. Liu, "A 3–15 GHz ultra-wideband 0.15-μm pHEMT low noise amplifier design," International Conference on Communication Systems, pp. 1-4, Dec. 2016.
[31] A. Tang and T. Reck, ‘‘A W-band 65 nm CMOS/InP-hybrid radiometer & passive imager,’’ IEEE IMS Symposium, May 2016.
[32] M. Sato, T. Ohki, and T. Takahashi, “InP-HEMT MMICs for passive millimeter-wave imaging sensors,” IEEE International Conference on Indium Phosphide and Related Materials, May 2008.
[33] Guangyin Feng, Xiang Yi, Fanyi Meng, Chirn Chye Boon, "A W-Band Switch-Less Dicke Receiver for Millimeter-Wave Imaging in 65 nm CMOS", IEEE Access, vol. 6, pp. 39233-39240, 2018.
[34] Roee Ben Yishay, Danny Elad, "D-band Dicke-radiometer in 90 nm SiGe BiCMOS technology", in 2017 IEEE MTT-S International Microwave Symposium Digest, Honolulu Hawai’i, USA, June 2017, pp. 1957-1960.
[35] A. Tomkins, P. Garcia, and S. P. Voinigescu, "A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 1981-1991, Oct. 2010.
[36] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, "K-Band SiGe System-on-Chip Radiometric Receiver for Remote Sensing of the Atmosphere", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 64, no. 12, pp. 3025-3035, Dec. 2017.
[37] Esref Turkmen, Barbaros Cetindogan, Melik Yazici, Yasar Gurbuz,“Design and Characterization of a D-Band SiGe HBT Front-End for Dicke Radiometers” IEEE Sensors Journal, vol. 20, no. 1, pp. 4694-4703, May. 2020.
[38] K. Nakamura, N. Iwasawa, K. Kawasaki, N. Shibagaki, Y. Sato and K. Kashima, "Study of the new application using the millimeter-wave in the railway," IEEE Conference on Antenna Measurements & Applications, pp. 20-23, Dec. 2017.
[39] C. Li, W. Hsieh and T. Chiu, "A flip-chip-assembled W-band receiver in 90-nm CMOS and IPD technologies," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1628-1639, April 2019.
[40] J. A. Qayyum, J. D. Albrecht and A. C. Ulusoy, "A compact V-band upconversion mixer with −1.4-dBm OP1dB in SiGe HBT technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 276-278, April 2019.
[41] Yi-Ching Wu, C. Chiong and H. Wang, "A novel 30–90 GHz singly balanced mixer with broadband LO/IF," IEEE MTT-S International Microwave Symposium, pp. 1-4, May 2016.
[42] P. Tsai, Y. Lin, J. Kuo, Z. Tsai and H. Wang, "Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand Balun," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1913-1923, May 2013.
[43] Y.-S. Lin, C.-L. Lu, and Y.-H. Wang, “A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 495–497, Sep. 2013.
[44] H. Y. Yang, J. H. Tsai, T. W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology,” IEEE Tran. Microw. Theory Tech, vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[45] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang,“A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1506–1514, Jul. 2014.
[46] Yaxin Zhang ,Wenfeng Liang, Paulius Sakalas, Anindya Mukherjee, Xiaodi Jin, Julia Krause, and Michael Schröter, “12-mW 97-GHz Low-Power Down-conversion Mixer With 0.7-V Supply Voltage,” IEEE Microw. And Wireless Compon. Lett., vol. 29, no. 4, Apr. 2019.
[47] Yo-Sheng Lin, Kai-Siang Lan, Chien-Chin Wang, Chien-Chu Chi, and Shey-Shi Lu, “6.3 mW 94 GHz CMOS Down-Conversion Mixer With 11.6 dB Gain and 54 dB LO-RF Isolation” IEEE Microw. And Wireless Compon. Lett., vol. 26, no. 8, Aug. 2016.
[48] WIN Semiconductors Corporation PIHI-10 PINHEMT:4-V Enhancement Mode pHEMT with Integrated 1 μm i-PIN & 0.4 μm i-SBD Layout Design Manual.
[49] WIN Semiconductors Corporation NP15-00 0.15 μm GaN/SiC HEMT Power Device Layout Design Manual.
[50] K. Phan, C. Mai, S. Lee and C. Huynh, "A Ka-band GaN high power amplifier," IEEE International Symposium on Electrical and Electronics Engineering (ISEE), pp. 19-22, Oct. 2019.
[51] M. Li, "A millimeter wave broadband GaAs power amplifier with balanced bias feedings for stability enhancement," IEEE Wireless and Microwave Technology Conference, pp. 1-4,April 2016.
[52] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," IEEE/MTT-S International Microwave Symposium, pp. 808-811, June 2018.
[53] I. Ju, H. Ji and I. Yom, "Ku-band GaAs MMIC high power amplifier with high efficiency and broadband," IEEE Conference on Microwave Techniques, pp. 1-4, April 2015.
[54] T. Tian, X. Sun, H. Gao and S. Lu, "A novel differential push-pull amplifier based on N-yype GaAs HBT," IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, pp. 142-145, May 2018.
[55] C. Florian, R. P. Paganelli and J. A. Lonac, "12-W X -band MMIC HPA and driver amplifiers in InGaP-GaAs HBT technology for space SAR T/R modules," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1805-1816, June 2012.
[56] NP15-00 0.15μm GaN/SiC HEMT Power Device Layout Design Manual.
[57] A. Alizadeh, M. Frounchi and A. Medi, "On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1831-1842, 29 April 2016.
[58] H. Alsuraisry, S. Yen, J. Tsai and T. Huang, "Ka-band up-link CMOS/GaAs power amplifier design for satellite-based wireless sensor," 2017 Topical Workshop on Internet of Space (TWIOS), pp. 1-3, Jan. 2017.
[59] G. Lv, W. Chen and Z. Feng, "A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications," 2018 IEEE/MTT-S International Microwave Symposium - IMS, pp. 808-811, June 2018.
[60] J. Curtis, A. Pham, M. Chirala, F. Aryanfar and Z. Pi, "A Ka-Band doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 349-352, July 2013.
[61] Y. L. Jiang and Y. Fan, "A Compact Ka-Band GaAs pHEMT MMIC Notch Filtering Power Amplifier," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3, May 2019.
[62] D. P. Nguyen, J. Curtis and A. Pham, "A Doherty Amplifier With Modified Load Modulation Scheme Based on Load–Pull Data," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 227-236, Jan. 2018. |