博碩士論文 107326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.222.182.26
姓名 梁紹庭(Shao-Ting Liang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2020年春季及秋季台中市PM2.5水溶性無機離子短時間變化特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2020年春季(4月22日至5月6日)及秋季(9月17日至9月25日)在中山醫學大學測站,利用半自動儀器觀測短時間(20分鐘)的PM2.5水溶性無機離子,結合鄰近環保署測站監測資料解析數據;此外,為了評估NH3的影響,於秋季採樣期間增加觀測NH3的短時間變化。
在春季前期(4月22日至4月27日)出現海風影響事件,Na+在4/27日以前總共出現了三次不同程度的高值,伴隨持續時間較長的西風,Cl-/Na+在海風期間平均為1.07,氯損失平均為19.14%,ISORROPIA II模式模擬結果,Na2SO4在海風影響期間有明顯的峰值。春季中期(4/27至5/2),高濃度事件的 NO2、NO及CO等前驅氣體濃度分別上升,推測為交通排放源,且高濃度為經由NO2二次反應形成的NH4NO3主導。春季後期(5月2日至5月6日),整體低濃度與NO2的二次反應減弱有關。另外從網站氣流場模擬(http://earth.nullschool.net)發現,春季中期開始(4/27)至春季後期(5/6)整個氣流的改變促成了污染物擴散。
秋季(2020年 9月17日至9月25日)的數據發現,在NH4+/SO42->1.5,隨著NH3(g)的濃度上升,NH4+的氣相與顆粒相分配比例ε(NH4+)有明顯的曲線關係,最後到達0.2較穩定的數值;ε(NH4+)分配比率降低推測與環境中的HNO3濃度缺乏有關,0.2為反應達到平衡點。另外,NH3的來源推測是來自植物露水的蒸發再加上鄰近工地的重機具。
秋季前期(2020年 9月17日至9月21日)第一次高濃度事件(ES1)是來自交通活動排放大量的前驅氣體,NO3-由光化反應生成。第二次高濃度事件, SO42-有一段峰值出現,NO3-則較為平緩,與ES1期間恰好相反,由於光化活動並沒有ES1強烈,即使在NH3充足濃度下,PM2.5濃度沒有高過ES1期間。在夜間低溫高濕且風速低的環境條件下,NO3-的峰值是由N2O5水解的異質反應為主導。
秋季後期(9月21日至9月25日)第一次高濃度事件期間,NH3不足且出現明顯的北風,濃度上升的主因應為來自外地傳輸。第二次高濃度事件風速低,顯示受外地傳輸的影響有限,PM2.5濃度的上升是由NO3-主導,但SO42-的高濃度與高占比提供了一個穩定的PM2.5濃度基本數值。從NO2-的數據發現,在相對濕度高於69%的條件下,NO2的液相反應對NO2-生成有重要影響,且大氣中供給鹼度的能力越強,越有利於NO2-的生成,但在相對濕度低於55%的情況下,NO2-主要形成機制應是由NO3-光解形成。
總結來說,本文發現台中都會地區受地形影響,吹南風有利於本地污染擴散,東北季風則利於外地污染傳輸,交通污染源對於PM2.5濃度的上升佔了主導地位。除了污染源和氣象因子外,春季高濃度NO3-產生化學反應機制由NO2二次反應形成的NH4NO3主導,秋季高濃度NO3-則是N2O5水解的異質反應,NH3濃度對污染物的生成有關鍵作用。
摘要(英) This study used a semi-automatic instrument to observe short-interval (20 minutes) PM2.5 water-soluble inorganic ions at the Chung Shan Medical University station and resolved the results by combining with monitoring data of the neighboring monitoring station of Taiwan Environmental Protection Administration in spring (4/22 to 5/6) and autumn (9/17 to 9/25) of 2020. In addition, short-term variations of NH3 were observed to evaluate the impact of NH3 in autumn.
In the early spring (4/22 to 4/27), sea-breeze events occurred, three high Na+ values with varying degrees accompanied by long-lasting westerly winds before 4/27. The Cl-/Na+ was averaged at 1.07 during the sea-breeze, and the average chlorine loss was 19.14%. Simulations from the ISORROPIA II model showed a pronounced Na2SO4 peak during the sea-breeze event. In the middle spring (4/27 to 5/2), a high-concentration event was observed with increased precursor gas concentrations such as NO2, NO, and CO, which was attributed to traffic emissions dominated by NH4NO3 from secondary reactions of NO2. In the late spring (5/2 to 5/6), the overall low concentration was related to the weakening of secondary reactions of NO2. In addition, the change of the entire airflow from the middle spring (4/27) to the late spring (5/6) enhanced the diffusion of pollutants based on flow field simulation from the website (http://earth.nullschool.net).
The data in autumn (9/17 to 9/25) showed that the concentration ratio of NH4+ gas to particle partition, ε(NH4+), decreased with an increase of NH3 in a curvelike relationship and finally reached at a relatively stable value of 0.2 for NH4+/SO42->1.5. The decrease of ε(NH4+) partition ratio is presumed to be related to the lack of HNO3 concentration in the environment, and 0.2 is the equilibrium point of the reaction. In addition, the sources of NH3 are conjectured to contribute from the evaporation of plant dew plus heavy machinery at the nearby construction site.
In the early autumn (2020 9/17 to 9/21), the first high-concentration event (ES1) was attributed to the emissions of a large amount of precursor gases from traffic activities and photochemical reactions in producing NO3-. During the second high-concentration event, SO42- was peaked in contrast to relatively flat NO3-, which was opposite to ES1. Since the photochemical activities were not as strong as ES1, the PM2.5 concentration was higher than the ES1 period, even under sufficient NH3 concentration. At night, NO3- peaks were presumed to be caused by the heterogeneous reactions of N2O5 hydrolysis when the environment was under low temperature, high humidity, and low wind speed.
During the first high-concentration event in late autumn (9/21 to 9/25), NH3 was insufficient, and with noticeable northerly winds, the rising concentration was from external transport. During the second high-concentration event, the wind speed was low to limit outside transport. NO3- dominated the increase of PM2.5 concentration, but the high concentration and high proportion of SO42- provided a stable PM2.5 base concentration. From the measurements of NO2-, the liquid phase reactions of NO2 played an essential role in NO2- formation when the relative humidity was higher than 69%. And the more potent the ability of alkalinity supply in the atmosphere, the more the formation of NO2-. However, the primary formation mechanism of NO2- should be the photolysis of NO3- when the relative humidity is lower than 55%.
In summary, this study found that the topography of the Taichung metropolis tended to accumulate local pollution for the southerly wind and conducted an external pollution transport under the northeast monsoon. Traffic pollution sources dominated the increase of PM2.5 concentrations. In addition to pollution sources and meteorological factors, NH4NO3 formed from secondary reactions of NO2 dominated the chemical reaction mechanism of high-concentration NO3- in spring. In contrast, the high NO3- concentrations in autumn were attributed to the heterogeneous reactions of N2O5 hydrolysis. The concentration of NH3 plays a crucial role in the formation of pollutants.
關鍵字(中) ★ 水溶性無機離子
★ 短時間量測
★ 氣膠高濃度事件
★ 台中都會區污染
關鍵字(英)
論文目次 目錄
摘要 II
Abstract IV
致謝 VI
目錄 VII
圖目錄 X
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠水溶性無機離子 3
2.1.1 WSIIs中和狀況及結合型態 3
2.1.2 WSIIs不同粒徑的機制及來源 4
2.1.3 WSIIs短時間變化 6
2.1.4 WSIIs季節性變化 9
2.1.5海鹽影響WSIIs 9
2.2 氣膠酸度 11
2.2.1 氣膠熱動力模式(ISORROPIA II & E-AIM) 11
2.2.2 氣膠pH值及含水量 12
2.3 都市前驅氣體 14
2.4 都市氣膠特性 18
2.4.1 都市硝酸根離子及硫酸根離子比值 21
2.4.2 亞硝酸鹽(NO2-)形成機制及來源 22
2.4.3 都市NOR與SOR變化 26
2.5 氣膠水溶性無機離子連續監測儀器 27
2.5.1 平行板濕式固氣分離器 28
2.5.2 不同即時氣膠WSIIs監測儀器結果比對 29
第三章 研究方法 31
3.1 研究架構 31
3.2 採樣地點與採樣週期 32
3.3 採樣儀器與方法 33
3.3.1 短時間氣膠WSIIs監測 33
3.4 大氣氣膠連續監測系統 38
3.4.1 半自動監測儀器 38
3.4.6 其他連續監測儀器 39
3.5 氣流軌跡模式(NOAA HYSPLIT) 40
3.6 ISORROPIA Ⅱ模式分析 41
3.7 硫氧化比值(SOR)與氮氧化比值(NOR) 42
3.8 採樣數據QA/QC 43
第四章 結果與討論 47
4.1 台中市中山醫學大學測站春季特殊事件探討 47
4.1.1 春季前期海風影響事件探討(4/22 12:00至4/27 0:00) 47
4.1.2 春季中期高濃度事件探討(4/27 0:00至5/2 18:00) 53
4.1.3 春季後期低濃度事件探討(5/2 18:00至5/6 0:00) 57
4.1.4 春季採樣中期vs後期風速風向及氣流軌跡探討 60
4.2 秋季高濃度事件與氨氣相關性探討 63
4.2.1 氨氣與銨根離子轉換率 63
4.2.2 氨氣在都市環境的來源及氨氣對硝酸鹽及硫酸鹽的生成影響 65
4.2.3 ISORROPIA II 模擬結果差異比較 (forward與reverse模式) 71
4.2.4秋季前期高濃度事件探討 72
4.2.5秋季後期高濃度事件探討 80
4.3中山醫學大學春季及秋季數據比較 87
4.3.1 春季及秋季日變化比較 87
4.3.2 水溶性無機離子占比比較 94
4.4亞硝酸根離子 96
第五章 結論 102
5.1 結論 102
5.2建議 107
參考文獻 108
附錄 121
參考文獻 Acharja, P., Ali, K., Trivedi, D.K., Safai, P., Ghude, S., Prabhakaran, T., Rajeevan, M., 2020. Characterization of atmospheric traces gases and water soluble inorganic chemical ions of PM1 and PM2. 5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Science of The Total Environment, 138800.
Allen, A., Harrison, R.M., Erisman, J.-W., 1989. Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols. Atmospheric Environment (1967) 23, 1591-1599.
Almeida, G.P., Bittencourt, A.T., Evangelista, M.S., Vieira-Filho, M.S., Fornaro, A., 2019. Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmospheric environment 202, 149-159.
Andreae, M.O., Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews 89, 13-41.
Apituley, A., Schaap, M., Koelemeijer, R., Timmermans, R., Schoemaker, R., de Leeuw, G., 2008. Construction of satellite derived PM2. 5 maps using the relationship between AOD and PM2. 5 at the Cabauw Experimental Site for Atmospheric Research (CESAR)-The Netherlands, Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. IEEE, pp. III-507-III-510.
Atwood, S.A., Reid, J.S., Kreidenweis, S.M., Liya, E.Y., Salinas, S.V., Chew, B.N., Balasubramanian, R., 2013. Analysis of source regions for smoke events in Singapore for the 2009 El Nino burning season. Atmospheric environment 78, 219-230.
Barsotti, F., Bartels-Rausch, T., De Laurentiis, E., Ammann, M., Brigante, M., Mailhot, G., Maurino, V., Minero, C., Vione, D., 2017. Photochemical formation of nitrite and nitrous acid (HONO) upon irradiation of nitrophenols in aqueous solution and in viscous secondary organic aerosol proxy. Environmental science & technology 51, 7486-7495.
Benedict, K.B., McFall, A.S., Anastasio, C., 2017. Quantum yield of nitrite from the photolysis of aqueous nitrate above 300 nm. Environmental science & technology 51, 4387-4395.
Boreddy, S., Kawamura, K., 2015. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust. Atmospheric chemistry and physics 15, 6437-6453.
Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., Mihalopoulos, N., 2016. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability. Atmospheric Chemistry and Physics 16, 4579-4591.
Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A., 1985. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27-35.
Cao, J., Shen, Z., Chow, J.C., Qi, G., Watson, J.G., 2009. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 7, 161-168.
Cao, Y., Zhang, Z., Xiao, H., Xie, Y., Liang, Y., Xiao, H., 2020. How aerosol pH responds to nitrate to sulfate ratio of fine-mode particulate. Environmental Science and Pollution Research 27, 35031-35039.
Chen, W., Wang, X., Cohen, J.B., Zhou, S., Zhang, Z., Chang, M., Chan, C.-Y., 2016. Properties of aerosols and formation mechanisms over southern China during the monsoon season. Atmospheric Chemistry & Physics 16.
Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., Wang, W.-x., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances 2, e1601530.
Chien, C.-L., Tsai, C.-J., Sheu, S.-R., Cheng, Y.-H., Starik, A.M., 2015. High-efficiency parallel-plate wet scrubber (PPWS) for soluble gas removal. Separation and Purification Technology 142, 189-195.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Countess, R.J., 1996. Sources and chemistry of PM10 aerosol in Santa Barbara County, CA. Atmospheric Environment 30, 1489-1499.
Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C., Yang, N., Ma, H., 2020. Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO x and SO2 Control. Environmental Science & Technology Letters 7, 695-700.
Dai, Q., Bi, X., Song, W., Li, T., Liu, B., Ding, J., Xu, J., Song, C., Yang, N., Schulze, B.C., 2019. Residential coal combustion as a source of primary sulfate in Xi′an, China. Atmospheric Environment 196, 66-76.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., Zhang, Y., 2019. Aerosol pH and its driving factors in Beijing. Atmospheric Chemistry and Physics 19, 7939-7954.
Dong, Z., Su, F., Zhang, Z., Wang, S., 2020. Observation of chemical components of PM2. 5 and secondary inorganic aerosol formation during haze and sandy haze days in Zhengzhou, China. journal of environmental sciences 88, 316-325.
Draxler, R., Rolph, G., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. ready. arl. noaa. gov/HYSPLIT. php.
Farren, N.J., Dunmore, R.E., Mead, M.I., Nadzir, M.S., Samah, A., Phang, S.-M., Bandy, B.J., Sturges, W.T., Hamilton, J.F., 2019. Chemical characterisation of water-soluble ions in atmospheric particulate matter on the east coast of Peninsular Malaysia. Atmospheric Chemistry and Physics, 1537-1553.
Flechard, C., Fowler, D., Sutton, M., Cape, J., 1999. A dynamic chemical model of bi‐directional ammonia exchange between semi‐natural vegetation and the atmosphere. Quarterly Journal of the Royal Meteorological Society 125, 2611-2641.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca 2+–Mg 2+–NH 4+–Na+–SO 4 2−–NO 3−–Cl−–H 2 O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment 42, 2023-2036.
Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., 2019. Role of ammonia on the feedback between AWC and inorganic aerosol formation during heavy pollution in the North China Plain. Earth and Space Science 6, 1675-1693.
Guo, H., Liu, J., Froyd, K.D., Roberts, J.M., Veres, P.R., Hayes, P.L., Jimenez, J.L., Nenes, A., Weber, R.J., 2017. Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics 17, 5703-5719.
Guo, H., Sullivan, A.P., Campuzano‐Jost, P., Schroder, J.C., Lopez‐Hilfiker, F.D., Dibb, J.E., Jimenez, J.L., Thornton, J.A., Brown, S.S., Nenes, A., 2016. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research: Atmospheres 121.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K.M., Capps, S.L., Hite Jr, J., Carlton, A., Lee, S.-H., Bergin, M., Ng, N., 2015. Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry & Physics 15.
Gupta, P., Christopher, S.A., 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. Journal of Geophysical Research: Atmospheres 114.
He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., Chen, G., 2012. Spatial and seasonal variability of PM2. 5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics 12, 1377.
He, L., Chen, H., Rangognio, J., Yahyaoui, A., Colin, P., Wang, J., Daële, V., Mellouki, A., 2018. Fine particles at a background site in Central France: Chemical compositions, seasonal variations and pollution events. Science of The Total Environment 612, 1159-1170.
Hennigan, C., Izumi, J., Sullivan, A., Weber, R., Nenes, A., 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys 15, 2775-2790.
Henning, S., Weingartner, E., Schwikowski, M., Gäggeler, H., Gehrig, R., Hinz, K.P., Trimborn, A., Spengler, B., Baltensperger, U., 2003. Seasonal variation of water‐soluble ions of the aerosol at the high‐alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research: Atmospheres 108.
Heydarizadeh, A., Kahforoushan, D., 2019. Estimation of real-world traffic emissions for CO, SO 2, and NO 2 through measurements in urban tunnels in Tehran, Iran. Environmental Science and Pollution Research 26, 26577-26592.
Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., Guo, S., 2017. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmospheric Chemistry & Physics 17.
Huang, R.-J., Duan, J., Li, Y., Chen, Q., Chen, Y., Tang, M., Yang, L., Ni, H., Lin, C., Xu, W., 2020. Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of The Total Environment 717, 137190.
Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., 2017. Chemical characterization and source identification of PM 2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics 17, 12941-12962.
Huang, X., Qiu, R., Chan, C.K., Kant, P.R., 2011. Evidence of high PM2. 5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]= 1.5. Atmospheric Research 99, 488-495.
Kim, E., Kim, B.-U., Kim, H.C., Kim, S., 2021. Direct and cross impacts of upwind emission control on downwind PM2. 5 under various NH3 conditions in Northeast Asia. Environmental Pollution 268, 115794.
Kleffmann, J., 2007. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem 8, 1137-1144.
Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003. Measured and simulated vertical profiles of nitrous acid—Part I: Field measurements. Atmospheric Environment 37, 2949-2955.
Kotnala, G., Sharma, S., Mandal, T., 2020. Influence of Vehicular Emissions (NO, NO 2, CO and NMHCs) on the Mixing Ratio of Atmospheric Ammonia (NH 3) in Delhi, India. Archives of environmental contamination and toxicology 78, 79-85.
Kuang, Y., Xu, W., Lin, W., Meng, Z., Zhao, H., Ren, S., Zhang, G., Liang, L., Xu, X., 2020. Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation. Environmental Pollution 257, 113621.
Li, H., Wang, Q.g., Yang, M., Li, F., Wang, J., Sun, Y., Wang, C., Wu, H., Qian, X., 2016a. Chemical characterization and source apportionment of PM2. 5 aerosols in a megacity of Southeast China. Atmospheric Research 181, 288-299.
Li, L., Hoffmann, M.R., Colussi, A.J., 2018. Role of nitrogen dioxide in the production of sulfate during Chinese haze-aerosol episodes. Environmental science & technology 52, 2686-2693.
Li, L., Yin, Y., Kong, S., Wen, B., Chen, K., Yuan, L., Li, Q., 2014. Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmospheric environment 98, 242-252.
Li, S., Zhang, F., Jin, X., Sun, Y., Wu, H., Xie, C., Chen, L., Liu, J., Wu, T., Jiang, S., 2020a. Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018–2019. Atmospheric Environment 237, 117662.
Li, T.-C., Yuan, C.-S., Hung, C.-H., Lin, H.-Y., Huang, H.-C., Lee, C.-L., 2016b. Chemical characteristics of marine fine aerosols over sea and at offshore islands during three cruise sampling campaigns in the Taiwan Strait–Sea salts and anthropogenic particles. Atmospheric Chemistry and Physics Discussions, 1-27.
Li, X., Zhao, B., Zhou, W., Shi, H., Yin, R., Cai, R., Yang, D., Dällenbach, K., Deng, C., Fu, Y., 2020b. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing. Science of The Total Environment 721, 137700.
Lin, C., Feng, X., Heal, M.R., 2016. Temporal persistence of intra-urban spatial contrasts in ambient NO2, O3 and Ox in Edinburgh, UK. Atmospheric Pollution Research 7, 734-741.
Lindström, N., Talreja, T., Linnow, K., Stahlbuhk, A., Steiger, M., 2016. Crystallization behavior of Na2SO4–MgSO4 salt mixtures in sandstone and comparison to single salt behavior. Applied Geochemistry 69, 50-70.
Link, M.F., Kim, J., Park, G., Lee, T., Park, T., Babar, Z.B., Sung, K., Kim, P., Kang, S., Kim, J.S., 2017. Elevated production of NH4NO3 from the photochemical processing of vehicle exhaust: Implications for air quality in the Seoul Metropolitan Region. Atmospheric Environment 156, 95-101.
Liu, P., Ye, C., Xue, C., Zhang, C., Mu, Y., Sun, X., 2020. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry. Atmospheric Chemistry and Physics 20, 4153-4165.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183, 119-131.
Ma, J., Xu, X., Zhao, C., Yan, P., 2012. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in atmospheric sciences 29, 1006-1026.
Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., Tian, P., Han, Z., Xia, X., Wang, Y., 2017. Roles of regional transport and heterogeneous reactions in the PM2. 5 increase during winter haze episodes in Beijing. Science of the Total Environment 599, 246-253.
Malaguti, A., Mircea, M., La Torretta, T.M., Telloli, C., Petralia, E., Stracquadanio, M., Berico, M., 2015. Comparison of online and offline methods for measuring fine secondary inorganic ions and carbonaceous aerosols in the central mediterranean area. Aerosol and Air Quality Research 15, 2641-2653.
Maxwell‐Meier, K., Weber, R., Song, C., Orsini, D., Ma, Y., Carmichael, G., Streets, D., 2004. Inorganic composition of fine particles in mixed mineral dust–pollution plumes observed from airborne measurements during ACE‐Asia. Journal of Geophysical Research: Atmospheres 109.
Miyamoto, C., Sakata, K., Yamakawa, Y., Takahashi, Y., 2020. Determination of calcium and sulfate species in aerosols associated with the conversion of its species through reaction processes in the atmosphere and its influence on cloud condensation nuclei activation. Atmospheric Environment 223, 117193.
NeiláCape, J., 1996. Nitrous acid and nitrite in the atmosphere. Chemical Society Reviews 25, 361-369.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic geochemistry 4, 123-152.
Ocskay, R., Salma, I., Wang, W., Maenhaut, W., 2006. Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. Journal of Environmental Monitoring 8, 300-306.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics 24, 815-822.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Parworth, C.L., Young, D.E., Kim, H., Zhang, X., Cappa, C.D., Collier, S., Zhang, Q., 2017. Wintertime water‐soluble aerosol composition and particle water content in Fresno, California. Journal of Geophysical Research: Atmospheres 122, 3155-3170.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Yao, X., Lau, A.K., Chan, C.K., 2003. Acidity and concentrations of ionic species of PM2. 5 in Hong Kong. Atmospheric Environment 37, 1113-1124.
Pierson, W.R., Brachaczek, W.W., 1988. Coarse-and fine-particle atmospheric nitrate and HNO3 (g) in Claremont, California, during the 1985 Nitrogen Species Methods Comparison Study. Atmospheric Environment (1967) 22, 1665-1668.
Rossi, M.J., 2003. Heterogeneous reactions on salts. Chemical Reviews 103, 4823-4882.
Sörgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., Zetzsch, C., 2011. Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmospheric Chemistry and Physics 11, 841-855.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shang, X., Kang, H., Chen, Y., Abdumutallip, M., Li, L., Li, X., Fu, H., Wang, X., Wang, L., Wang, X., 2021. PM1. 0-Nitrite Heterogeneous Formation Demonstrated via a Modified Versatile Aerosol Concentration Enrichment System Coupled with Ion Chromatography. Environmental Science & Technology 55, 9794-9804.
She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Ie, I.-R., 2020. Chemical Characteristics, Spatiotemporal Distribution, and Source Apportionment of PM2. 5 Surrounding Industrial Complexes in Southern Kaohsiung. Aerosol and Air Quality Research 20, 557-575.
Shi, G., Xu, J., Shi, X., Liu, B., Bi, X., Xiao, Z., Chen, K., Wen, J., Dong, S., Tian, Y., 2019. Aerosol pH dynamics during haze periods in an urban environment in China: use of detailed, hourly, speciated observations to study the role of ammonia availability and secondary aerosol formation and urban environment. Journal of Geophysical Research: Atmospheres 124, 9730-9742.
Shi, Q., Tao, Y., Krechmer, J.E., Heald, C.L., Murphy, J.G., Kroll, J.H., Ye, Q., 2021. Laboratory Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate. Environmental science & technology 55, 854-861.
Song, C.H., Carmichael, G.R., 2001. Gas-particle partitioning of nitric acid modulated by alkaline aerosol. Journal of atmospheric chemistry 40, 1-22.
Song, C.H., Park, M.E., Lee, E.J., Lee, J.H., Lee, B.K., Lee, D.S., Kim, J., Han, J.S., Moon, K.J., Kondo, Y., 2009. Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmospheric Environment 43, 2168-2173.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., McElroy, M.B., 2018. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics 18, 7423-7438.
Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., Zarmpas, P., Liakakou, E., Gerasopoulos, E., Mihalopoulos, N., 2019. Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study. Atmospheric Chemistry and Physics 19, 901-919.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Stelson, A., Seinfeld, J.H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment (1967) 16, 983-992.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F.X., Andreae, M.O., Cheng, P., Zhang, Y., Pöschl, U., 2011. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333, 1616-1618.
Suarez-Bertoa, R., Mendoza-Villafuerte, P., Riccobono, F., Vojtisek, M., Pechout, M., Perujo, A., Astorga, C., 2017. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real world driving conditions. Atmospheric Environment 166, 488-497.
Sun, Y., Zhuang, G., Tang, A., Wang, Y., An, Z., 2006. Chemical characteristics of PM2. 5 and PM10 in haze− fog episodes in Beijing. Environmental science & technology 40, 3148-3155.
Takeuchi, M., Miyazaki, Y., Tanaka, H., Isobe, T., Okochi, H., Ogata, H., 2017. High Time-resolution monitoring of free-tropospheric sulfur dioxide and nitric acid at the summit of Mt. Fuji, Japan. Water, Air, & Soil Pollution 228, 325.
Tang, M., Liu, Y., He, J., Wang, Z., Wu, Z., Ji, D., 2020. In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China Plain from 2014 to 2019: temporal variation, chemical formation and regional transport. Chemosphere 262, 127745.
Tang, Y.S., Flechard, C.R., Dämmgen, U., Vidic, S., Djuricic, V., Mitosinkova, M., Uggerud, H.T., Sanz, M.J., Simmons, I., Dragosits, U., 2021. Pan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution load. Atmospheric Chemistry and Physics 21, 875-914.
Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H., Yao, X., 2017. Identification of major sources of atmospheric NH3 in an urban environment in northern China during wintertime. Environmental science & technology 51, 6839-6848.
Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yu, J., Zhai, C., Wang, J., Yang, F., 2017. Highly time-resolved characterization of water-soluble inorganic ions in PM2. 5 in a humid and acidic mega city in Sichuan Basin, China. Science of the Total Environment 580, 224-234.
Truex, T.J., Pierson, W.R., McKee, D.E., 1980. Sulfate in diesel exhaust. Environmental Science & Technology 14, 1118-1121.
Tsai, J.-H., Tsai, S.-M., Wang, W.-C., Chiang, H.-L., 2016. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan. Environmental Science and Pollution Research 23, 16722-16737.
Tutsak, E., Kocak, M., 2019. High time-resolved measurements of water-soluble sulfate, nitrate and ammonium in PM2.5 and their precursor gases over the Eastern Mediterranean. Sci Total Environ 672, 212-226.
VandenBoer, T., Markovic, M., Sanders, J., Ren, X., Pusede, S., Browne, E., Cohen, R., Zhang, L., Thomas, J., Brune, W.H., 2014. Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. Journal of Geophysical Research: Atmospheres 119, 9093-9106.
VandenBoer, T.C., Young, C.J., Talukdar, R.K., Markovic, M.Z., Brown, S.S., Roberts, J.M., Murphy, J.G., 2015. Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement. Nature Geoscience 8, 55.
Vecchi, R., Bernardoni, V., Valentini, S., Piazzalunga, A., Fermo, P., Valli, G., 2018. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environmental Pollution 233, 679-689.
Verma, V., Fang, T., Guo, H., King, L., Bates, J., Peltier, R., Edgerton, E., Russell, A., Weber, R., 2014. Reactive oxygen species associated with water-soluble PM 2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics 14, 12915-12930.
Wang, G., Li, J., Cheng, C., Hu, S., Xie, M., Gao, S., Zhou, B., Dai, W., Cao, J., An, Z., 2011. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009-Part 1: EC, OC and inorganic ions. Atmospheric Chemistry and Physics 11, 4221.
Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C.E., Wang, Y., 2019a. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of the Total Environment 646, 564-572.
Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., 2020. Fast sulfate formation from oxidation of SO 2 by NO 2 and HONO observed in Beijing haze. Nature Communications 11, 1-7.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X., Sui, X., Yao, L., 2015. HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Science of the Total Environment 538, 93-101.
Wang, S., Yu, R., Shen, H., Wang, S., Hu, Q., Cui, J., Yan, Y., Huang, H., Hu, G., 2019b. Chemical characteristics, sources, and formation mechanisms of PM2. 5 before and during the Spring Festival in a coastal city in Southeast China. Environmental Pollution 251, 442-452.
Wang, Y.L., Song, W., Yang, W., Sun, X.C., Tong, Y.D., Wang, X.M., Liu, C.Q., Bai, Z.P., Liu, X.Y., 2019c. Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2. 5 nitrate formation in Beijing. Journal of Geophysical Research: Atmospheres 124, 4174-4185.
Wen, Z., Xu, W., Pan, X., Han, M., Wang, C., Benedict, K., Tang, A., Collett Jr, J.L., Liu, X., 2021. Effects of reactive nitrogen gases on the aerosol formation in Beijing from late autumn to early spring. Environmental Research Letters 16, 025005.
Wong, K., Oh, H.-J., Lefer, B., Rappenglück, B., Stutz, J., 2011. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmospheric Chemistry and Physics 11, 3595-3609.
Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Liu, S., Du, W., 2020. Non-agricultural sources dominate the atmospheric NH3 in Xi′an, a megacity in the semi-arid region of China. Science of The Total Environment 722, 137756.
Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J., 2019. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. Environmental Science and Pollution Research 26, 2649-2661.
Xiao, H.W., Zhu, R.G., Pan, Y.Y., Guo, W., Zheng, N.J., Liu, Y.H., Liu, C., Zhang, Z.Y., Wu, J.F., Kang, C.A., 2020. Differentiation between nitrate aerosol formation pathways in a southeast Chinese city by dual isotope and modeling studies. Journal of Geophysical Research: Atmospheres 125, e2020JD032604.
Xu, J.-S., Xu, M.-X., Snape, C., He, J., Behera, S.N., Xu, H.-H., Ji, D.-S., Wang, C.-J., Yu, H., Xiao, H., 2017. Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere 179, 316-330.
Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., 2019. Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From High‐Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research: Atmospheres 124, 1132-1147.
Yao, X., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic predictions for in situ pH in PM2. 5. Atmospheric Environment 40, 2835-2844.
Yin, S., Huang, Z., Zheng, J., Huang, X., Chen, D., Tan, H., 2018. Characteristics of inorganic aerosol formation over ammonia-poor and ammonia-rich areas in the Pearl River Delta region, China. Atmospheric Environment 177, 120-131.
Yu, C., Yan, J., Zhang, H., Lin, Q., Zheng, H., Zhong, X., Zhao, S., Zhang, M., Zhao, S., Li, X., 2020a. Characteristics of Aerosol WSI With High‐Time‐Resolution Observation Over Arctic Ocean. Earth and Space Science 7, e2020EA001227.
Yu, Y., Ding, F., Mu, Y., Xie, M., Wang, Q.g., 2020b. High time-resolved PM2. 5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP. Chemosphere 261, 127746.
Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M., Iqbal, S., 2008. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites. Atmospheric Chemistry and Physics 8, 7133-7151.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y., 2013. Chemical characterization and source apportionment of PM2. 5 in Beijing: seasonal perspective. Atmos. Chem. Phys 13, 7053-7074.
Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., Qiang, J., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: seasonal variations and sources. Atmospheric Research 102, 110-119.
Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., Lin, Y., 2019. Seasonal variations and source apportionment of water-soluble inorganic ions in PM 2.5 in Nanjing, a megacity in southeastern China. Journal of Atmospheric Chemistry 76, 73-88.
Zhang, Y., Huang, W., Cai, T., Fang, D., Wang, Y., Song, J., Hu, M., Zhang, Y., 2016. Concentrations and chemical compositions of fine particles (PM2. 5) during haze and non-haze days in Beijing. Atmospheric Research 174, 62-69.
Zhang, Y., Tang, A., Wang, D., Wang, Q., Benedict, K., Zhang, L., Liu, D., Li, Y., Collett Jr, J.L., Sun, Y., 2018. The vertical variability of ammonia in urban Beijing, China. Atmospheric Chemistry and Physics 18, 16385-16398.
Zhang, Y., Yang, L., Bie, S., Zhao, T., Huang, Q., Li, J., Wang, P., Wang, Y., Wang, W., 2020. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2. 5 in the coastal area. Atmospheric Research, 105323.
Zhao, J., Zhang, F., Xu, Y., Chen, J., 2011. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research 99, 546-562.
Zhao, P., Chen, Y., Su, J., 2017. Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing. Journal of Environmental Sciences 54, 298-313.
Zhao, Q., Nenes, A., Yu, H., Song, S., Xiao, Z., Chen, K., Shi, G., Feng, Y., Russell, A.G., 2020. Using High-Temporal-Resolution Ambient Data to Investigate Gas-Particle Partitioning of Ammonium over Different Seasons. Environmental Science & Technology 54, 9834-9843.
Zhao, Y., Gao, Y., 2008. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment 42, 4063-4078.
Zhou, C., Zhou, H., Holsen, T.M., Hopke, P.K., Edgerton, E.S., Schwab, J.J., 2019. Ambient Ammonia Concentrations Across New York State. Journal of Geophysical Research: Atmospheres 124, 8287-8302.
Zhu, C., Xiang, B., Zhu, L., Cole, R., 2008. Determination of absorption cross sections of surface-adsorbed HNO3 in the 290–330 nm region by Brewster angle cavity ring-down spectroscopy. Chemical Physics Letters 458, 373-377.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
林家慶,2008。鹿林山空氣品質背景監測之背景值分析, 大氣物理所碩
士論文。國立中央大學。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性,環境工程研究
所碩士論文。國立中央大學。
林書輝,2013。2011年不同來源氣團鹿林山氣膠WSIIs動態變化
,環境工程研究所碩士論文。國立中央大學。
張士昱,2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055
號。
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠WSIIs短
時間動態變化特性,環境工程研究所碩士論文。國立中央大學。
蔡承佑,2016。2014年鹿林山氣膠WSIIs短時間動態變化特性,
環境工程研究所碩士論文。國立中央大學。
姜明辰,2016。2015年鹿林山氣膠WSIIs短時間動態變化特性,
環境工程研究所碩士論文。國立中央大學。
張士昱,2016。氣膠收集裝置。中華民國發明專利第M515102號。
陳威任,2018。2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣
膠WSIIs短時間動態變化,環境工程研究所碩士論文。
國立中央大學。
陳彥銘,2018。2016~2017年東亞背景、生質燃燒傳輸及高山雲霧水氣膠
WSIIs短時間變化,環境工程研究所碩士論文。國立中
央大學。
楊孟樵,2020。2017~2018年台灣都市與高山氣膠WSIIs短時
間動態變化特性,環境工程研究所碩士論文。國立中央大學。
林寬昱,2020。2019年鹿林山背景及生質燃燒煙團傳輸氣膠特性及光學特
特性解析,環境工程研究所碩士論文。國立中央大學。
李崇德、周崇光、張士昱、蕭大智、許文昌(2019)”108年度細懸浮微粒(PM2.5)
化學成分監測及分析計畫”,期末報告(定稿本),環保署,台北,
    108年11月。
環保署檢驗所 (2005) 環境檢驗品方法偵測及縣測定指引(NIEA-PA107),
中華民國94年1月15日實施。
周崇光,關鍵突破計畫。台灣中西部空氣污染之診斷與歸因研究。
中國文化大學大氣科學系 大氣水文研究資料庫
指導教授 李崇德 審核日期 2021-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明