博碩士論文 107326601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.219.206.102
姓名 黎富強(Le Phu Cuong)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 The effect of torrefied corncob biochar on immobilization of lead and copper in the simulated urban runoff
(The effect of torrefied corncob biochar on immobilization of lead and copper in the simulated urban runoff)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-18以後開放)
摘要(中) 本研究探討以烘烤製備之玉米芯生物碳(biochar ) 特性及評估生物碳 (biochar )在城市模擬逕流中鉛 (Pb)和銅(Cu)之穩定性,烘烤製備過程在不同的加熱溫度(200、250 和 300°C)與加熱時間(1、2和3小時)下操作生產玉米芯生物碳 (biochar )。以管柱試驗測試城市模擬一年逕流的生物碳 (biochar )對鉛(Pb)和銅(Cu) 污染的穩定性,同時討論管柱溶出試驗中金屬鉛和銅之吸附機制。生物碳 (biochar )的產量和物理化學性質受到溫度的影響顯著,在溫度300°C和時長3小時情況下,生物碳 (biochar ) 產率約為50%並隨溫度上升而降低。然而隨著烘烤溫度和時間分別從200°C增加至300°C和1小時增加至3小時,固定碳含量從12.92%增加至56.5%。
實驗結果指出,土壤和生物碳 (biochar )層可以有效降低城市模擬逕流中98%的Pb(II)和57%的Cu(II),同時單金屬管柱吸附試驗中4.25%的Pb(II)和25.15%的Cu(II)會留在生物碳 (biochar )層中。在雙金屬管柱吸附試驗中,約有99%的Pb(II)和77%的Cu(II)留在土壤和生物碳 (biochar )層中,而生物碳 (biochar )則含有8%的Pb(II)和33.5%的Cu(II)。在土壤-生物碳 (biochar )層之單一金屬吸附試驗中Pb(II)吸附效率高於Cu(II),而在雙金屬吸附試驗中Cu(II)之吸附效率則略高於Pb(II),其原因為銅複合物使官能基團和可溶性有機碳從生物碳 (biochar )中釋放所導致。總體而言,從本研究之結果可以得知提高烘烤玉米芯生物碳 (biochar )產量及其吸附應用之關鍵資訊。烘焙玉米芯生物碳 (biochar )將會是一種替代吸附材料,其可以有效穩固城市逕流中Pb(II)和Cu(II),並可以清除承受水體中之目標金屬污染物。
摘要(英) This study investigates the characteristics of torrefied corncob biochar and evaluates the immobilization performance of lead (Pb) and copper (Cu) by biochar in a simulated urban runoff. The torrefaction process was operated at three different temperatures (200, 250 and 300oC) and heating times (1, 2, and 3 hours) to produce corncob biochar. The immobilization of Pb and Cu by biochar was examined using the column test for simulating one-year urban runoff containing Pb and Cu contaminates. Metal Pb and Cu adsorption mechanism by the column leaching test was also discussed. The biochar yield and physicochemical properties were significantly affected by torrefaction temperature. In the case of temperature operated at 300oC and 3 hours holding time, the biochar yield was approximately 50% and decreased with the temperature increased. However, the fixed carbon content of biochar was increased from 12.92% to 56.5% with an increase in the torrefaction temperature and time from 200oC to 300oC and 1 hour to 3 hours, respectively.
The experimental results indicated that soil and biochar layers could effectively reduce 98% of Pb(II) and 57% of Cu(II) in simulated urban runoff as well as 4.25% of Pb(II) and 25.15% of Cu(II) could be retained in biochar layer in single metal adsorption column test. In terms of the binary metal adsorption column test, approximately 99% of Pb(II) and 77% Cu(II) could retain in the soil and biochar layer, and 8% of Pb(II) and 33.5% of Cu(II) had in the biochar layer, respectively. In single metal adsorption test, Pb(II) adsorption efficiency is higher than Cu(II) in the soil-biochar layer. In comparison Cu(II) adsorption efficiency is slightly higher than Pb(II) in binary metal adsorption test. This is because the Cu complex formation resulted in the functional groups and dissolved organic carbon (DOC) released from the biochar. In summary, the results obtained from this study could provide the critical information for producing higher biochar yield torrefied from corncob and its adsorption application. The torrefied corncob biochar would be an alternative adsorbent material that could effectively immobilize heavy metals Pb(II) and Cu(II) from urban runoff and eliminate the tested metals contaminant in the receiving water.
關鍵字(中) ★ 生物碳
★ 玉米芯
★ 烘烤
★ 管柱測試
★ 重金屬
★ 城市逕流
關鍵字(英) ★ Biochar
★ corncob
★ torrefaction
★ column test
★ heavy metal
★ urban runoff
論文目次 摘要…….. i
Abstract…. ii
Acknowledgements iv
Table of Contents v
List of Tables viii
List of Figures x
Explanation of Symbols xiii
Chapter 2 Literature Review 4
2-1 Biomass characteristic 5
2-1-1 Biomass overview 5
2-1-2 Corncob biomass raw material 8
2-1-3 Corncob utilization 9
2-2 Torrefaction application as thermochemical conversion technique 10
2-2-1 Biomass conversion 10
2-2-2 Overview of biomass torrefaction process 11
2-2-3 Torrefaction mechanism 12
2-2-4 Torrefaction product distribution 13
2-3 The fundamentals of Biochar 16
2-3-1 Physicochemical property of biochar 16
2-3-1 Physicochemical property of biochar 16
2-3-2 Corncob-based Biochar 20
2-4 Column leaching experiment 23
2-4-1 Heavy metal pollution 23
2-4-2 Overview of runoff water 23
2-4-3 Soil column experiment 26
2-4-4 Column dimensions 28
2-4-5 Soil packing 29
2-5 Changes of heavy metal in the soil under biochar application 30
Chapter 3 Materials and Methods 33
3-1 Materials preparation 33
3-1-1 Corncob sampling 33
3-1-2 Soil sampling 33
3-2 Experimental conditions 35
3-2-1 Biochar preparation 35
3-2-2 Adsorption experiment 36
3-2-3 Column leaching experiment 37
3-3 Analysis method 42
3-3-1 Materials 42
3-3-2 Soil characteristic 49
3-3-3 Biochar characterization 53
3-3-4 Column leaching test 53
Chapter 4 Results and Discussion 55
4-1 Characteristics of materials 55
4-1-1 Corncob materials 55
4-1-2 Soil material 58
4-2 Characterization of materials 61
4-2-1 Characteristic of biochar 61
4-3 Adsorption isotherm of biochar 80
4-3-1 Single heavy metal adsorption isotherm 80
4-3-2 Adsorption isotherm of binary system 81
4-4 Immobilization of Cu and Pb by prepared biochar 83
4-4-1 Characteristic of leachate 83
4-4-2 Characteristics of soil and biochar layers after the simulated column test 94
4-4-3 Mass balance and partitioning characteristics of Pb and Cu during the simulated column test 102
4-5 Metal adsorption mechanism 110
4-5-1 Pb adsorption mechanism 111
4-5-2 Cu adsorption mechanism 112
4-6 Correlation among the pH, EC, DOC, and heavy metal concentration 114
Chapter 5 Conclusion and Recommendation 117
5-1 Conclusion 117
5-2 Recommendation 119
APPENDIX 133
參考文獻 Al Hawari, A., 2004. Biosorption of lead, copper, cadmium and nickel by anaerobic biomass. Doctoral dissertation, Concordia University.
Anukam, A., Goso, B., Okoh, O., Mamphweli, N., 2017a. Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry 2017, 1-9.
Anukam, A.I., Goso, B.P., Okoh, O.O., Mamphweli, S.N., 2017b. Studies on characterization of corn cob for application in a gasification process for energy production. Journal of Chemistry 2017.
Arabi, Z., Rinklebe, J., El-Naggar, A., Hou, D., Sarmah, A.K., Moreno-Jiménez, E., 2021. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environmental Pollution 286, 117199.
Ashworth, D., Alloway, B., 2008. Influence of dissolved organic matter on the solubility of heavy metals in sewage‐sludge‐amended soils. Communications in Soil Science and Plant Analysis 39, 538-550.
Attendorn, H.-G., Bowen, R., 2012. Radioactive and stable isotope geology. Springer Science & Business Media.
Bashour, I., Sayegh, A.H., 2007. Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations, Rome, Italy, p. 119.
Basu, P., 2013a. Chapter 1 - Introduction, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). Academic Press, Boston, pp. 1-27.
Basu, P., 2013b. Chapter 3 - Biomass Characteristics, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). Academic Press, Boston, pp. 47-86.
Basu, P., 2013c. Chapter 4 - Torrefaction, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). Academic Press, Boston, pp. 87-145.
Beesley, L., Marmiroli, M., 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution 159, 474-480.
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution 159, 3269-3282.
Bleiwas, D., 2006. Stocks and flows of lead-based wheel weights in the United States. US Geological Survey Open-File Report 1111.
Bousquet, J., 2005. Thermal data for natural and synthetic fuels. The Canadian Journal of Chemical Engineering 83, 389-389.
Budai, A., Wang, L., Grønli, M., Strand, L., Antal, M., Abiven, S., Dieguez Alonso, A., Anca-Couce, A., Rasse, D., 2014. Surface properties and chemical composition of corncob and miscanthus biochars: Effects of production temperature and method. Journal of Agricultural and Food Chemistry 62.
Calucci, L., Rasse, D.P., Forte, C., 2013. Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and miscanthus. Ecotoxicology and Environmental Safety 27, 303-309.
Cerqueira, B., Covelo, E.F., Andrade, M.L., Vega, F.A., 2011. Retention and mobility of copper and lead in soils as influenced by soil horizon properties. Pedosphere 21, 603-614.
Chandrakant, P., Bisaria, V.S., 1998. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Critical Reviews in Biotechnology 18, 295-331.
Chen, B., Zhou, D., Zhu, L., 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology 42, 5137-5143.
Chen, J.P., 2012. Decontamination of heavy metals: processes, mechanisms, and applications. Crc Press.
Chen, W.H., Lu, K.M., Lee, W.J., Liu, S.H., Lin, T.C., 2014. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Applied Energy 114, 104-113.
Chen, Z.S., Hseu, Z.Y., Tsai, C.C., 2015. The Soils of Taiwan. World Soils Book Series, Dordrecht: Springer Netherlands.
Christensen, J.B., Jensen, D.L., Christensen, T.H., 1996. Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater. Water Research 30, 3037-3049.
Claoston, N., Samsuri, A., Ahmad Husni, M., Mohd Amran, M., 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research 32, 331-339.
Danje, S., 2011. Fast pyrolysis of corn residues for energy production. Doctoral dissertation, Stellenbosch: Stellenbosch University.
Davis, A.P., Shokouhian, M., Ni, S.J.C., 2001. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. 44, 997-1009.
De Avellar, I.G.J., Cotta, T.A.P.G., Finageiv Neder, A.d.V., 2012. Using artificial soil and dry-column flash chromatography to simulate organic substance leaching process: a colorful environmental chemistry experiment. Journal of Chemical Education 89, 248-253.
Deenik, J.L., Cooney, M.J., 2016. The potential benefits and limitations of corn cob and sewage sludge biochars in an infertile oxisol. Sustainability 8, 131.
Demirbas, A., 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72, 243-248.
Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., Yan, Z., 2017. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science 506, 355-364.
Development, O.f.E.C.a., 2004. Test No. 312: Leaching in Soil Columns. OECD Publishing.
Devnarain, P., Arnold, D., Davis, S., 2002. Production of activated carbon from South African sugarcane bagasse, The South African Sugar Association. Citeseer, pp. 477-489.
Dhungana, A., Dutta, A., Basu, P., 2012. Torrefaction of Non‐Lignocellulose Biomass Waste. The Canadian Journal of Chemical Engineering 90, 186-195.
Dinake, P., Mokgosi, S.M., Kelebemang, R., Kereeditse, T.T., Motswetla, O., 2021. Pollution risk from Pb towards vegetation growing in and around shooting ranges–a review. Environmental Pollutants and Bioavailability 33, 88-103.
Dinh Thao, T., Tri Khiem, N., Xuan Trieu, M., Gerpacio, R., Pingali, P., 2004. Maize in Vietnam: production systems, constraints, and research priorities. International Maize and Wheat Improvement Center.
Faaij, A., 2018. Biomass Resources, Worldwide, in: Meyers, R.A. (Ed.), Encyclopedia of Sustainability Science and Technology. Springer New York, New York, NY, pp. 1-53.
Faiz, A., Weaver, C.S., Walsh, M.P., 1996. Air pollution from motor vehicles: standards and technologies for controlling emissions. World Bank Publications.
Farrah, H., Pickering, W., 1977. Influence of clay-solute interactions on aqueous heavy metal ion levels. Water, Air, and Soil Pollution 8, 189-197.
Feng, J., Yu Hong, Q., Green, A.E.S., 2006. Analytical model of corn cob pyroprobe-FTIR data. Biomass and Bioenergy 30, 486-492.
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., Liu, H., 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. Plos One 9.
Gaur, S., Reed, T.B., 2020. Thermal data for natural and synthetic fuels. CRC press.
Gebremedhin, B., Fernandez-Rivera, S., Hassena, M., Mwangi, W., Ahmed, S., 2007. Maize and Livestock: Their inter-linked roles in meeting human needs in ethiopia. International Livestock Research Institute.
Gilbert, O., Hernández, M., Vilanova, E., Cornellà, O., 2014. Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demeau, European Union: Brussels, Belgium.
Goyal, H., Seal, D., Saxena, R., 2008. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews 12, 504-517.
Guo, C., Zou, J., Yang, J., Wang, K., Song, S., 2020. Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue. Plos one 15, e0238105.
Guo, Y., Rockstraw, D.A., 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100, 12-19.
Gupta, G., Ram, M., Bala, R., Kapur, M., Mondal, M., 2017. Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal. Environmental Progress & Sustainable Energy 37.
Gupta, G.K., Ram, M., Bala, R., Kapur, M., Mondal, M.K., 2018. Pyrolysis of chemically treated corncob for biochar production and its application in Cr (VI) removal. Environmental Progress & Sustainable Energy 37, 1606-1617.
Gusiatin, Z.M., Kurkowski, R., Brym, S., Wiśniewski, D., 2016. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Environmental science and pollution research international 23, 21249-21261.
Hall, K., Anderson, B., 2011. The toxicity and chemical composition of urban stormwater runoff. Canadian Journal of Civil Engineering 15, 98-106.
Hamelinck, C.N., Hooijdonk, G.v., Faaij, A.P.C., 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 28, 384-410.
Hao, F., Xuchen, Z., Ouyang, W., Lin, C., Chen, S.Y., Shan, Y., Lai, X., 2013. Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption. Agronomy Journal 105, 773.
Hassan, M., Liu, Y., Naidu, R., Parikh, S.J., Du, J., Qi, F., Willett, I.R., 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of The Total Environment 744, 140714.
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P.C., Xu, J., 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution 252, 846-855.
Hsu, C.Y., Chiang, H.C., Lin, S.L., Chen, M.J., Lin, T.Y., Chen, Y.C., 2016. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hu, S., Wu, Y., Yi, N., Zhang, S., Zhang, Y., Xin, X., 2017. Chemical properties of dissolved organic matter derived from sugarcane rind and the impacts on copper adsorption onto red soil. Environmental Science and Pollution Research 24, 21750-21760.
Huang, B., Li, Z., Huang, J., Chen, G., Nie, X., Ma, W., Yao, H., Zhen, J., Zeng, G., 2015. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil. Environmental Science and Pollution Research 22, 11467-11477.
Hulskotte, J., Denier van der Gon, H., Visschedijk, A., Schaap, 2007a. Brake wear from vehicles as an important source of diffuse copper pollution. Water Science and Technology 56, 223-231.
Hulskotte, J., Denier van der Gon, H., Visschedijk, A., Schaap, M., 2007b. Brake wear from vehicles as an important source of diffuse copper pollution. Water science and technology 56, 223-231.
Hwang, H.-M., Fiala, M.J., Park, D., Wade, T.L., 2016. Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. International Journal of Urban Sciences 20, 334-360.
Ioannidou, O., Zabaniotou, A., Antonakou, E.V., Papazisi, K.M., Lappas, A.A., Athanassiou, C., 2009. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable & Sustainable Energy Reviews 13, 750-762.
Islam, M.S., Kwak, J.H., Nzediegwu, C., Wang, S., Palansuriya, K., Kwon, E.E., Naeth, M.A., El-Din, M.G., Ok, Y.S., Chang, S.X., 2021. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution 281, 117094.
Jenkins, B.M., Baxter, L.L., Miles, T.R., Miles, T.R., 1998. Combustion properties of biomass. Fuel Processing Technology 54, 17-46.
John, D.A., Leventhal, J.S., 1995. Bioavailability of metals: Preliminary compilation of descriptive geoenvironmental mineral deposit models. U.S. Department of The Interior, 10-18.
Kabata-Pendias, A., 2010. Trace elements in soils and plants. CRC Press/Taylor & Francis Group, Boca Raton, FL, USA.
Kalbitz, K., Solinger, S., Park, J.H., Michalzik, B., Matzner, E., 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165, 277-304.
Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environmental Science & Technology 44, 1247-1253.
Khanmohammadi, Z., Afyuni, M., Mosaddeghi, M.R., 2015. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research 33, 275-283.
Kirkham, M.B., 2014. Chapter 13 - Infiltration, in: Kirkham, M.B. (Ed.), Principles of Soil and Plant Water Relations (Second Edition). Academic Press, Boston, pp. 201-227.
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41, 990-1000.
Kołodyńska, D., Wnętrzak, R., Leahy, J., Hayes, M., Kwapiński, W., Hubicki, Z., 2012. Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal 197, 295-305.
Krug, E.C., Frink, C.R., 1983. Acid rain on acid soil: a new perspective. Science 221, 520-525.
Kuoppamäki, K., Hagner, M., Valtanen, M., Setälä, H., 2019. Using biochar to purify runoff in road verges of urbanised watersheds: A large-scale field lysimeter study. Watershed Ecology and the Environment 1, 15-25.
Lehmann, J., Joseph, S., 2009. Biochar for environment management science and technology. Routledge.
Leng, L., Huang, H., Li, H., Li, J., Zhou, W., 2019. Biochar stability assessment methods: A review. Science of The Total Environment 647, 210-222.
Li, L., Rowbotham, J.S., Christopher Greenwell, H., Dyer, P.W., 2013. Chapter 8 - An Introduction to Pyrolysis and Catalytic Pyrolysis: Versatile Techniques for Biomass Conversion, New and future developments in catalysis. Elsevier, Amsterdam, pp. 173-208.
Li, Z., Shuman, L.M., 1997. Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract—I. leaching in soil columns. Environmental Pollution 95, 219-226.
Lifset, R.J., Eckelman, M.J., Harper, E., Hausfather, Z., Urbina, G.J.S.o.t.t.e., 2012. Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. 417, 138-147.
Loehr, R., 2012. Agricultural waste management: problems, processes, and approaches. Elsevier.
Lough, G.C., Schauer, J.J., Park, J.-S., Shafer, M.M., DeMinter, J.T., Weinstein, J.P., 2005. Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology 39, 826-836.
Lovei, M., 1998. Phasing out lead from gasoline: worldwide experience and policy implications. World Bank Publications.
Lu, J.J., Chen, W.H., 2014. Product yields and characteristics of corncob waste under various torrefaction atmospheres. Energies 7, 13-27.
Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Liu, X., Wang, H., 2016. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 285-292.
Luo, M., Lin, H., He, Y., Zhang, Y., 2020. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Science of The Total Environment 717, 137014.
Ma, Y., Lin, C., Jiang, Y., Lu, W., Si, C., Liu, Y., 2009. Competitive removal of water-borne copper, zinc and cadmium by a CaCO3-dominated red mud. Journal of Hazardous Materials 172, 1288-1296.
Mahdi, Z.A., 2018. Single and Multicomponent Heavy Metal Ion Adsorption from Aqueous System Using Biochar Derived from Date Seed Biomass. (Doctoral dissertation, Griffith University). Griffith University.
Mancinelli, E., Baltrėnaitė, E., Baltrėnas, P., Marčiulaitienė, E., Passerini, G., 2017. Dissolved organic carbon content and leachability of biomass waste biochar for trace metal (Cd, Cu and Pb) speciation modelling. Journal of Environmental Engineering and Landscape Management 25, 354-366.
McKenzie, E.R., Money, J.E., Green, P.G., Young, T.M.J.S.o.t.t.e., 2009. Metals associated with stormwater-relevant brake and tire samples. 407, 5855-5860.
Mertz, W., Anguino, E., Cannon, H., Hambidge, K., Voors, A., 1974. Geochemistry and the environment, vol I: the relation of selected trace elements to health and disease. National Academy of Sciences, Washington, DC, 853-878.
Mohan, D., Pittman, C.U., Steele, P.H., 2006. Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review. Energy & Fuels 20, 848-889.
Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr, C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology 160, 191-202.
Mosley, L.M., Willson, P., Hamilton, B., Butler, G., Seaman, R., 2015. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage. Environmental Science and Pollution Research 22, 15113-15122.
Mudoga, H., Yucel, H., Kincal, N., 2008. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology 99, 3528-3533.
Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B., 2010. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass & Bioenergy 34, 67-74.
Newell, R.G., Rogers, K., 2003. The US experience with the phasedown of lead in gasoline. Resources for the Future, 32.
Nhuchhen, D.R., Basu, P., Acharya, B., 2014. A comprehensive review on biomass torrefaction
International Journal of Renewable Energy & Biofuels 2014, 1-56.
Novak, J., Lima, I., Xing, B., Gaskin, J., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W., Schomberg, H., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3, 195-206.
Nriagu, J.O.J.S.o.t.t.e., 1990. The rise and fall of leaded gasoline. Science of The Total Evironment 92, 13-28.
Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., 2015. Biochar: Production, Characterization, and Applications. CRC press
Oliviera, I.B., Demond, A.H., Salehzadeh, A., 1996. Packing of sands for the production of homogeneous porous media. Soil Science Society of America Journal 60, 49-53.
Park, J.H., Cho, J.S., Ok, Y.S., Kim, S.H., Kang, S.W., Choi, I.W., Heo, J.S., DeLaune, R.D., Seo, D.C., 2015. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment. Journal of Environmental Science and Health, Part A 50, 1194-1204.
Park, J.H., Ok, Y.S., Kim, S.H., Cho, J.S., Heo, J.S., Delaune, R.D., Seo, D.C., 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77-83.
Penido, E.S., Martins, G.C., Mendes, T.B.M., Melo, L.C.A., do Rosário Guimarães, I., Guilherme, L.R.G., 2019. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety 172, 326-333.
Puga, A.P., Melo, L.C.A., de Abreu, C.A., Coscione, A.R., Paz-Ferreiro, J., 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research 164, 25-33.
Qiu, Q., Wu, J., Liang, G., Liu, J., Chu, G., Zhou, G., Zhang, D., 2015. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China. Environmental Monitoring and Assessment
187, 1-13.
Rennenberg, H., Gessler, A., 2001. Acid Rain.
Riaz, M., Roohi, M., Arif, M.S., Hussain, Q., Yasmeen, T., Shahzad, T., Shahzad, S.M., Muhammad, H.F., Arif, M., Khalid, M., 2017. Corncob-derived biochar decelerates mineralization of native and added organic matter (AOM) in organic matter depleted alkaline soil. Geoderma 294, 19-28.
Rice, K.C., Conko, K.M., Hornberger, G.M.J.E.s., technology, 2002. Anthropogenic sources of arsenic and copper to sediments in a suburban lake, northern Virginia. 36, 4962-4967.
Salam, A., Shaheen, S.M., Bashir, S., Khan, I., Wang, J., Rinklebe, J., Rehman, F.U., Hu, H., 2019. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management 237, 5-14.
Sansalone, J.J., Buchberger, S.G., 1997. Partitioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering 123, 134-143.
Sarkar, B., 2002. Heavy metals in the environment. CRC press.
Schwar, M.J., Moorcroft, J.S., Laxen, D.P., Thompson, M., Armorgie, C., 1988. Baseline metal-in-dust concentrations in Greater London. The Science of the total environment 68, 25-43.
Shaaban, A., Se, S.-M., Mitan, N.M.M., Dimin, M., 2013. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering 68, 365-371.
Shaaban, A., Se, S.M., Dimin, M.F., Juoi, J.M., Mohd Husin, M.H., Mitan, N.M.M., 2014. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis 107, 31-39.
Sharma, P., Vyas, S., Kaushal, M., Mahure, N., Sivakumar, N., Ratnam, M., 2011. Effect of the intensity of the acid rain on the geotechnical properties of soils of diferent plasticity. Material Science Research India 8, 265-271.
Shen, Z., Hou, D., Zhao, B., Xu, W., Ok, Y.S., Bolan, N.S., Alessi, D.S., 2018. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Science of The Total Environment 619-620, 185-193.
Shi, R.y., Hong, Z.n., Li, J.y., Jiang, J., Baquy, M.A.A., Xu, R.k., Qian, W., 2017. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars. Journal of Agricultural and Food Chemistry 65, 8111-8119.
Singh, B., Camps-Arbestain, M., Lehmann, J., Csiro, 2017. Biochar : a guide to analytical methods. CRC Press. Taylor & Francis Group.
Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., Qiu, W., 2014. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal 242, 36-42.
Spokas, K.A., 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management 1, 289-303.
Srivastava, P., Singh, B., Angove, M., 2005. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science 290, 28-38.
Statistics, S., 2014. National Recycling Rate Study. Battery Council International, Chicago, Illinois.
Strawn, D.G., Bohn, H.L., O′Connor, G.A., 2019. Soil chemistry. John Wiley & Sons.
Sud, D., Mahajan, G., Kaur, M.P., 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology 99, 6017-6027.
Tabatabai, M.A., Olson, R., 1985. Effect of acid rain on soils. Critical Reviews in Environmental Science and Technology 15, 65-110.
Tanner, P.A., Ma, H.L., Yu, P.K.N., 2008. Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environmental Science & Technology 42, 7111-7117.
Tian, X., Dai, L., Wang, Y., Zeng, Z., Zhang, S., Jiang, L., Yang, X., Yue, L., Liu, Y., Ruan, R., 2020. Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic. Bioresource Technology 297, 122490.
Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., Komárek, M., 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource technology 203, 318-324.
Uchimiya, M., Lima, I.M., Thomas Klasson, K., Chang, S., Wartelle, L.H., Rodgers, J.E., 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
Journal of Agricultural and Food Chemistry 58, 5538-5544.
Uddin, M.K., 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal 308, 438-462.
Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B., 2011. Torrefaction of oil palm wastes. Fuel 90, 2585-2591.
Ulrich, B.A., Loehnert, M., Higgins, C., 2017. Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environmental Science: Water Research & Technology 3, 726-734.
USDOT, 2015. State transportation statistics 2015. Bureau of Transportation Statistics, United States Department of Transportation.
Usman, A.R., Abduljabbar, A., Vithanage, M., Ok, Y.S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S.S., Al-Wabel, M.I., 2015. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis 115, 392-400.
Vu, T.M., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S., Ngo, H.H., 2017. Removing ammonium from water using modified corncob-biochar. Science of the Total Environment 579, 612-619.
Wang, C., Gu, L., Liu, X., Zhang, X., Cao, L., Hu, X., 2016. Sorption behavior of Cr (VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. International Biodeterioration & Biodegradation 111, 78-84.
Wang, H., Zhou, A., Peng, F., Yu, H., Yang, J., 2007. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). Journal of Colloid and Interface Science 316, 277-283.
Wang, S., Guo, W., Gao, F., Wang, Y., Gao, Y., 2018. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Advances 8, 13205-13217.
Wang, X., Zhou, W., Liang, G., Song, D., Zhang, X., 2015. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment 538, 137-144.
Wannapeera, J., Fungtammasan, B., Worasuwannarak, N., 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92, 99-105.
Wen, J., Peng, Z., Liu, Y., Fang, Y., Zeng, G., Zhang, S., 2018. A case study of evaluating zeolite, CaCO3, and MnO2 for Cd-contaminated sediment reuse in soil. Journal of soils and sediments 18, 323-332.
Xie, T., Reddy, K.R., Wang, C., Yargicoglu, E., Spokas, K., 2015. Characteristics and applications of biochar for environmental remediation: a review. Critical Reviews in Environmental Science and Technology 45, 939-969.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal 200, 673-680.
Yu, F., Steele, P.H., Ruan, R., 2010. Microwave pyrolysis of corn cob and characteristics of the pyrolytic chars. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32, 475-484.
Yuan, H., Yang, Q., Wang, Y., Gu, J., He, M., Sun, F.a., 2018. Impact of torrefaction on the fuel properties and combustion characteristics of compost of food waste and sawdust. Energy & Fuels 32, 3469-3476.
Yun, S.-W., Yu, C., 2015. Immobilization of Cd, Zn, and Pb from soil treated by limestone with variation of pH using a column test. Journal of Chemistry 2015, 1-8.
Zhao, L., Nan, H., Kan, Y., Xu, X., Qiu, H., Cao, X., 2019. Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environmental Pollution 254, 113114.
Zheng, S.A., Zheng, X.Q., Chen, C., 2012. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. Plos One 7
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明