參考文獻 |
[1] Schneider, M.,Harms, R.,Jungjohann, A. and Thurmann, A. (2019) “World Nuclear Waste Report 2019 - Focus Europe.” HBS, Germany.
[2] Bodén, A. and Sievänen, U. (2005), “Low-pH injection grout for deep repositories.” POSIVA-Working Report 2005-24, Posiva, Olkiluoto.
[3] Pusch, R. and Svemar, C. (2004). “Comparison of repository concepts &recommendations for design and construction of future safe repositories.” International Progress Report IPR-04-55, SKB, Stockholm.
[4] SKB. (2017). “Safety functions, performance targets and technical design requirements for a KBS-3V repository.” Posiva SKB Report 01, SKB and Posiva.
[5] SKB. (2006). “Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation.” SKB TR-06-09, SKB, Stockholm.
[6] Margit S., and Timo V. (2005). “Long-term safety aspects of the use of cement in a repository for spent fuel.” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16. pp. 27-40.
[7] Haaramo, M., and Lehtonen, A. (2009). “Principle plug design for deposition tunnels.” POSIVA Working Report 2009-38, Posiva, Finland.
[8] Richard, V. (2012). “Low-pH concrete plug for sealing the KBS-3V deposition tunnels.” SKB R-11-04, SKB, Stockholm.
[9] SKB. (2010). “Design, production and initial state of the backfill and plug in deposition tunnels.” SKB TR-10-16, SKB, Stockholm.
[10] 莊文壽、洪錦雄、董家寶,(2000),「深層地質處置技術之研究」,核研季刊,第三十七期、第44-54頁。
[11] 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[12] 陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
[13] 吳柏林,(2005),「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢。
[14] 張皓鈞,(2011),「放射性廢棄物最終處置場緩衝材料與混凝土障壁的交互作用」,碩士論文,國立中央大學土木工程研究所,中壢。
[15] Taborowski, T., Chukharkina, A.B.A., Blom, A. and Pedersen., K. (2019). “Bacterial presence and activity in compacted bentonites.” DELIVERABLE D2.4, v2, MIND, Sweden.
[16] Mitchell, J.K. and Soga, K (2005). Fundamentals of Soil Behaviour, 3rd ed., John Wiley, New York.
[17] Madsen, F.T., and Muller-Vonmoos, M. (1989). “The swelling behavior of clays.” Applied Clay Science, Vol. 4, pp. 143-156.
[18] 李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[19] Bauer, A., Lanson, B., Ferrage, E., Emmerich, K., Taubald, H., Schild, D. and Velde, B. (2006). “The fate of smectite in KOH solutions.” American Mineralogist, Vol. 91(8-9), pp. 1313-1322.
[20] 項國聖、徐永福、王毅、方圓,(2018),「鹼溶液侵蝕下高廟子膨潤土膨脹變形的變化規律」,上海交通大學學報,第五十二卷,第二期,第141-146頁。
[21] Fernandez, R., Cuevas, J., Sanchez, L,. Villa, R.V.D.L. and Leguey, S,. (2006). “Reactivity of the cement-bentonite interface with alkaline solutions using transport cells.” Applied Geochemistry, pp. 977-992.
[22] 陳寳、張會新、陳萍,(2013),「高鹼溶液對高廟子膨潤土侵蝕作用的研究」,岩土工程學報,第三十五卷,第一期,第181-186頁。
[23] Nuclear Decommissioning Authority. (2010). “Geological Disposal-Generic disposal system technical specification.” NDA Report No. NDA/RWMD/044, NDA, UK.
[24] Villar, M.V., Gómez-Espina, R. and Lloret, A. (2010). “Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2(1), pp. 71-78.
[25] Bag, R. (2011). “Coupled Thermo-Hydro-MechanicalChemical Behaviour Of MX80 Bentonite In Geotechnical Applications.” Thesis submitted in candidature for the degree of Doctor of Philosophy, Cardiff University, UK.
[26] Yu, H.H, Sun, D. and Gao, Y.(2018).“Effect of NaCl Solution on Swelling Characteristics of Bentonite with Different Diffuse Double Layers.” Applied Magnetic Resonance, Vol. 49, pp.725-737.
[27] 苗永紅、陸強、朱傑、徐桂中,(2017),「海水鹽度對黏土礦物基本特性影響規律研究」重慶交通大學學報(自然科學版),第三十六卷,第二期,第71-77頁。
[28] Alonso, M.C., Garcia, J.L., Hidalgo, A. and Fernández L. (2010), “Development and application of low-pH concretes for structural purposes in geological repository systems.” Woodhead Publishing Series in Energy, Vol. 9, pp. 286-322.
[29] Taylor, H.F.W. (1987), “A method for predicting alkali ion concentrations in cement pore solutions.” Advances in Cement Research, Vol. 1, pp.5–16.
[30] García, J.L., Alonso, M.C., Hidalgo, A. and Fernández, L. (2007). “Design of low-pH cementitious materials based on functional requirements,” R&D on low-pH cement for a geological repository, Third ESDRED workshop, Paris, June 13-14, 2007, pp. 40-51.
[31] Cau Dit Coumes, C., Codina, M., Bourbon, X., Leclercq, S., and Courtois, S. (2005). “Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories.” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16, pp.77-90.
[32] Savage, D., and Benbow, S. (2007). “Low pH Cements,” SKI Report 2007:32.
[33] Kobayashi, Y., Yamada, T., Matsui, H., Nakayama, M.,Mihara, M., Naito, M. and Yui, M. (2007). “Development of low-alkali cement for application in a JAEA URL”, Proc R&D on Low-pH Cement for a Geological Repository, 3rd Workshop, June 13-14, 2007, pp. 98-106.
[34] Codina, M., Cau-dit-Coumes, C., Bescop, P., Verdier, J., Ollivier, J.P., (2008), “Design and characterization of low-heat and low-alkalinity cements”, Cement and Concrete Research, Vol. 38, pp. 437-448.
[35] Bamforth, P.B., Baston, G.M.N., Berry, J.A., Glasser, F.P., Heath, T.G., Jackson, C.P., Savage, D. and Swanton, S.W. (2012). “Cement materials for use as backfill, sealing and structural materials in geological disposal concepts. A review of current status,” Serco, RP0618-252A, UK.
[36] Johanna, H., Tapani, L., Ursula, S. and Anna, K. (2005). “Selective stabilisation of deep core drilled boreholes using low-ph cement,” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16. pp. 122-137.
[37] Kronlöf, A. (2004). “Injection Grout for Deep Repositories-Low pH Cementitious Grout for Larger Fractures: Testing Technical Performance of Materials”, Posiva Oy, Olkiluoto, Finland. Working Report, pp. 41-45.
[38] Holt, E. (2007). “Durability of low-pH injection grout”, Posiva Working Report, pp. 57-63.
[39] Ittner, H. and Christiansson, R. (2017). “Rock support options for deposition tunnels,” SKB R-11-28, SKB, Stockholm.
[40] Bodén, A. and Pettersson, S. (2011). “Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials.” SKB R-11-08, SKB, Stockholm
[41] Grandia, F., Galíndez, J., M., Molinero, J. and Arcos, D. (2010). “Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site.” SKB TR-10-62, SKB, Stockholm.
[42] Subhan, A., and Umar, A,. (2016). “Characterization of Self-Compacting Concrete.” Procedia Engineering Vol.173. pp. 814-821.
[43] Vogt, C., Lagerblad, B., Wallin, K., Baldy, F. and Jonasson, J-E. (2009). “Low pH self-compacting concrete for deposition tunnel plugs.” SKB R-09-07, SKB, Stockholm.
[44] Holt, E., Leivo, M. and Vehmas, T. (2014). “Low-pH concrete developed for tunnel end plugs used in nuclear waste containment,” Concrete Innovation Conference 2014, June 11-13. Oslo, Norway.
[45] Vehmas, T., Schnidler, A., Löija, M., Leivo, M. and Holt, E. (2017). “Reference Mix Design and Castings for Low-pH Concrete For Nuclear Waste Repositories.” Paper presented at the Proceedings of the First Annual Workshop of the HORIZON 2020 CEBAMA Project (KIT Scientific Reports ; 7734), Barcelona, Spain.
[46] Vehmas, T., Leivo, M., Holt, E., Alonso, M.C., García, J.L., Fernández, Á., Isaacs, M., Rastrick, E., …Schäfer, T. (2018). “Cebama Reference Mix Design for Low-pH Concrete and Paste, Preliminary Characterisation.” Paper presented at the Proceedings of the Second Workshop of the HORIZON 2020 CEBAMA Project (KIT Scientific Reports 7752), Espoo, Finland
[47] Nakayama, M., Sato, H., Sugita, Y., Ito, S., Minamide, M. and Kitagawa, Y. (2010). “Low alkaline cement used in the construction of a gallery in the Horonobe Underground Research Laboratory.” Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM.
[48] Nakayama, M., Sawada, S., Sato, H. and Sugita, Y. (2012). “Study on Applicability of Low Alkaline Cement in Horonobe Underground Research Laboratory Project-In-situ Experiment at 250m Gallery.” JAEA-Research 2012-023, Hokkaido, Japan. (in Japanese).
[49] SENO, Y., NAKAYAMA, M., SUGITA, Y., YANAI, K. and Fujita, T. (2016). “Basic Properties of the Concrete using the Low Alkaline Cement (HFSC) Developed.” JAEA-Research 2016-011, Hokkaido, Japan. (in Japanese).
[50] Alonso, J., García-Siñeriz, J.L., Bárcena, I., Alonso, M.C., Fernández L.L., García, J.L., Fries, T., Pettersson, S., Bodén, A. and Salo., J.P. (2004) “Deliverable 1 Module 4 WP-1.” EC Contract FI6W-CT-2004508851; European Commission: Strasbourg, France.
[51] Lerouge, C., Gaboreau, S., Grangeon, S., Claret, F., Warmont, F., Jenni, A., Cloet, V. and Mader, U. (2017). “In situ interactions between Opalinus Clay and Low Alkali Concret.” Physics and Chemistry of the Earth, 99, 3-21.
[52] González-Santamaría, D.E., Angulo, M., Ruiz, A.I., Fernandez, R., Ortega, A. and Cuevas, J. (2018). “Low-pH cement mortar-bentonite perturbations in a small-scale pilot laboratory experiment.” Clay Minerals, Vol. 53, pp.237-254.
[53] 胡家銘,(2017),「低鹼性膠結材應用於放射性廢棄物最終處置場封塞混凝土之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[54] 張雅惠,(2018),「最終處置場低鹼性封塞混凝土膠結材優化及其與處置環境互動研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[55] 翁伯琦,(1985),「酸鹼理論與溶液pH值計算」,福建農業科技,第三期,第51-52頁。
[56] Choi, P., Yeon, J.H., and Yun, K.K. (2016). “Air-void structure, strength, and permeability of wet-mix shotcrete before and after shotcreting operation: The influences of silica fume and air-entraining agent.” Cement and Concrete Composites. Vol.70. pp. 69-77.
[57] Zhao, H., Sun, W., Wu, X. and Gao, B. (2020). “Influence of Addition of Polycarboxylate-Based Superplasticizer on Properties of High Performance Concrete.” Journal of Materials in Civil Engineering, 32(3): 04020009.
[58] Toledano-Prados, M., Lorenzo-Pesqueira, M., González-Fonteboa, B. and Seara-Paz, S. (2013). “Effect of Polycarboxylate Superplasticizers on Large Amounts of Fly Ash Cements”. Construction and Building Materials, Vol. 48 pp.628-635.
[59] Han, J., Sun, Q., Xing, H.F., Zhang, Y.L. and Sun, H. (2017). “Experimental study on thermophysical properties of clay after high temperature.” Applied Thermal Engineering, Vol. 111, pp.847-854 |