博碩士論文 107322603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.12.36.175
姓名 薛家晨(Jia-Chen Xue)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
(Performance Analysis of Low-pH Concrete at Geological Disposal Facility of High Level Waste and Its Influence on Buffer Materials)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-20以後開放)
摘要(中) 在過去的幾十年中大量高放射性廢棄物(High level waste, HLW)不斷產出,核能電廠用於放置高放射性廢棄物之臨時處置設施的儲存容量已經接近飽和狀態,高放射性廢棄物面臨最終處置的問題。深地層處置設施(Geological disposal facility, GDF)概念是將最終處置場建置在地表以下200 m ~ 1200 m之間,通過工程障壁結構(Engineered Barrier Systems, EBS)為中心理念進行設計,其中必須使用大量水泥系材料進行建造。由於普通水泥系材料具有高鹼性且高鹼溶液將會影響作爲緩衝材料之膨潤土性能,故用於最終處置場內之低鹼性水泥系材料孔隙溶液pH值必須低於11。
本研究之主要目的為以本土常見材料製作低鹼性混凝土,並為後續擬定相關標準提供參考。首先製作低鹼性一般混凝土、低鹼性自充填混凝土以及低鹼性噴凝土共計製作15組配比。膠結材料的使用比例中,前兩者水泥、矽灰及飛灰之比為5:4:1;低鹼性噴凝土則為4:2:4。通過對新拌、硬固、耐久以及水密性質進行工程性質之分析,探討其總膠結材料用量以及用水量的變化對不同類型混凝土工程性質之影響,並結合國際文獻分析該低鹼性混凝土的運用情況。其次利用MX-80與SPV 200膨潤土模擬最終處置場之現場環境,探討pH值在7 ~ 13.5範圍內以及常溫(23±1 ℃)、中溫(50±1 ℃)與高溫(80±1 ℃)之環境下對其膨脹性能之影響;同時驗證低鹼性混凝土孔隙溶液是否可以減少對膨潤土之影響。
結果顯示,不同類型低鹼性混凝土皆需借助強塑劑才可達到符合工作性之範圍內,使用的比例在1.3 % ~ 3.5 % 之間;pH值在齡期90天時除了低鹼性噴凝土外,皆可降低至11以下;抗壓強度在約56天時發展完全,90天時最高可達約62 MPa;體積穩定性、抗硫酸鹽能力以及緻密性方面皆表現良好;其中,配比PC-LB350-W45、SCC-LB300-W29及SHC-LB330-W30之綜合表現在本研究三類混凝土中最佳。膨潤土之膨脹指數試驗結果顯示,pH值與溫度變化對膨潤土之膨脹性能有顯著影響,其需處於pH值小於11之環境下才可保證膨脹能力的穩定;且通過試驗證實,使用低鹼性混凝土可較普通混凝土而言顯著降低對膨潤土膨脹能力之影響。
摘要(英) In the past decades, a large amount of high-level waste (HLW) has been continuously produced. Nuclear power plants are nearing full capacity for the temporary disposal facilities for HLW. The geological disposal facility (GDF) concept is to build the final disposal site between 200 m and 1,200 m below the surface and is designed with the engineered barrier systems (EBS) as the central concept, which requires the construction of a large volume of cement matrix materials. Because ordinary cement materials have high alkalinity and high alkalinity solution, and it will affect the performance of bentonite as buffer material, the pH value of the pore solution of low pH cement materials used in the final disposal site must be less than 11.
There are a total of 15 mixed designs. The ratio of cement, silica fume, and fly ash for low pH of general concrete and low pH of self-compacting concrete are 5:4:1, while the ratio of low pH of shotcrete (sprayed concrete) is 4:2:4. Then there was the study of bentonite, using MX-80 and SPV 200. The effects of different pH on the expansion properties of the samples were investigated under normal temperature (23±1 ℃), medium temperature (50±1 ℃), and high temperature (80±1 ℃), in the range of 7 ~ 13.5. At the same time, the effect of low-pH concrete pore solution on bentonite was verified.
The results show that the additive amount of superplasticizer in these concrete needs to be between 1.3 % and 3.5 %. Exception of shotcrete (sprayed concrete), the pH of all concrete can drop below 11 at 90 days. The compressive strength develops completely in about 56 days, and the maximum compressive strength is about 62 MPa in 90 days. Their volume stability, sulfate resistance, and compactness are excellent. Among them, the ratio of PC-LB350-W45, SCC-LB300-W29, and SHC-LB330-W30 had the best comprehensive performance. The experimental results of bentonite show that pH value and temperature change have a significant effect on the expansion property of bentonite. It needs a pH value of less than 11 to ensure the stability of the expansion ability. Moreover, the use of low-pH concrete can significantly reduce the influence on the expansion of bentonite.
關鍵字(中) ★ 工程障壁結構
★ 低鹼性混凝土
★ 緩衝材料
關鍵字(英) ★ Engineered Barrier Systems
★ ,Low-pH Concrete
★ Bentonite Buffer
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 x
表目錄 xiv
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究内容 2
第 2 章 文獻回顧 4
2.1 深地層處置 4
2.2 高放廢棄物最終處置場 4
2.3 封塞系统(Plug System) 7
2.3.1 混凝土梁(Concrete Beams) 7
2.3.2 過濾層(Filter) 8
2.3.3 水密密封(Watertight Seal) 8
2.3.4 封塞混凝土(Concrete Plug) 8
2.3.4.1 直通塞(Straight Plug) 9
2.3.4.2 對接塞(Butt Plug) 9
2.3.4.3 不規則塞(Irregular Plug) 10
2.3.4.4 圓頂形塞(Dome Shaped Plug) 10
2.3.4.5 楔形塞(Wedge-Shaped Plug) 11
2.3.5 排水管道(Drainage Pipes) 12
2.3.6 灌浆管道(Grouting Pipes) 12
2.4 緩衝材料(Bentonite Buffer) 12
2.4.1 緩衝材料之概念 12
2.4.2 膨潤土的基本特性 13
2.4.3 膨潤土的回脹機制 15
2.4.3.1 晶格回脹 15
2.4.3.2 滲透回脹 16
2.5 處置環境對膨潤土之影響 16
2.5.1 氫離子濃度指數效應(pH值)對膨潤土的影響 16
2.5.2 溫度對膨潤土的影響 18
2.5.3 鹽度對膨潤土的影響 20
2.6 處置設施中的水泥系材料 21
2.6.1 水泥系材料在處置場中的使用 21
2.6.2 低鹼性水泥系材料的定義 22
2.6.3 雙系統配比(Binary Mix Design) 24
2.6.4 三系統配比(Ternary Mix Design) 25
2.6.5 國際間低鹼性水泥之配比情況 27
2.7 不同類型低鹼性膠結材料之運用情況及工程性質 28
2.7.1 水泥漿(Grouts)與水泥砂漿(Cement Mortar) 28
2.7.1.1 用於裂縫修補與密封 29
2.7.1.2 用於岩栓灌漿 30
2.7.1.3 水泥灌漿之工程性質參考標準 31
2.7.2 一般混凝土(Concrete) 33
2.7.3 自充填混凝土(Self-Compacting Concrete) 35
2.7.3.1 用於封塞混凝土的建置 36
2.7.3.2 自充填混凝土之工程性質參考標準 40
2.7.4 噴凝土(Shotcrete) 40
2.7.4.1 用於隧道襯砌 41
2.7.4.2 用於封塞混凝土的建置 46
2.7.4.3 噴凝土之工程性質參考標準 48
2.7.5 低鹼性混凝土工程性质之关键影响因素 51
2.8 低鹼性混凝土材料與膨潤土之交互作用 53
2.8.1 現地長期模擬 53
2.8.2 試驗室短期模擬 54
2.8.3 電滲加速試驗 55
第 3 章 團隊之研究成果 57
3.1 低鹼性水泥漿與水泥砂漿之研究成果 57
3.1.1 雙系統配比之水泥漿體質驗證 57
3.1.2 雙系統及三系統配比之水泥砂漿性質驗證 58
3.1.3 低鹼性水泥砂漿之最終成果 60
3.2 低鹼性自充填混凝土之研究成果 60
3.2.1 雙系統配比之自充填混凝土性質驗證 61
3.2.2 三系統配比之自充填混凝土性質驗證 61
第 4 章 試驗規劃 63
4.1 試驗計畫 63
4.2 試驗材料 66
4.2.1 混凝土 66
4.2.1.1 卜特蘭水泥 66
4.2.1.2 矽灰 67
4.2.1.3 飛灰 67
4.2.1.4 石灰石粉 68
4.2.1.5 粗粒料 68
4.2.1.6 細粒料 69
4.2.1.7 拌和水 70
4.2.1.8 強塑劑 70
4.2.2 膨潤土 71
4.2.2.1 MX-80膨潤土 71
4.2.2.2 SPV 200膨潤土 71
4.2.2.3 NaOH溶液 72
4.2.2.4 混凝土孔隙溶液 72
4.3 試體編號及配比設計 73
4.3.1.1 混凝土 73
4.3.1.2 膨潤土 75
4.4 試驗方法 76
4.4.1 坍度試驗 76
4.4.2 坍流度試驗 76
4.4.3 流下性試驗 76
4.4.4 空氣含量試驗 77
4.4.5 抗壓強度 77
4.4.6 孔隙溶液pH值檢測 77
4.4.7 角柱乾縮試驗 78
4.4.8 抗硫酸鹽侵蝕試驗 78
4.4.9 快速氯離子滲透試驗 79
4.4.10 膨脹能力試驗 79
4.5 試驗設備及儀器 81
4.5.1 混凝土新拌性質試驗 81
4.5.1.1 混凝土拌和機 81
4.5.1.2 坍度模具 82
4.5.1.3 V型漏斗 82
4.5.1.4 B型氣量計 83
4.5.2 混凝土硬固及耐久性質試驗 83
4.5.2.1 抗壓機 83
4.5.2.2 數位式比長儀 84
4.5.2.3 油壓沖床 84
4.5.2.4 研磨機 85
4.5.2.5 pH值測定儀 85
4.5.3 混凝土水密性質試驗 86
4.5.3.1 電源供應器 86
4.5.4 膨潤土膨脹性能試驗 86
4.5.4.1 玻璃量筒 86
第 5 章 結果與討論 87
5.1 不同類型之低鹼性混凝土製作及工程性質驗證 87
5.1.1 新拌性質測試 87
5.1.1.1 低鹼性一般混凝土(PC系列) 87
5.1.1.2 低鹼性自充填混凝土(SCC系列) 88
5.1.1.3 低鹼性噴凝土(SHC系列) 90
5.1.2 硬固及耐久性質測試 91
5.1.2.1 低鹼性一般混凝土(PC系列) 91
5.1.2.2 低鹼性自充填混凝土(SCC系列) 96
5.1.2.3 低鹼性噴凝土(SHC系列) 105
5.1.3 水密性質測試 110
5.1.3.1 低鹼性一般混凝土(PC系列) 110
5.1.3.2 低鹼性自充填混凝土(SCC系列) 111
5.1.3.3 低鹼性噴凝土(SHC系列) 111
5.1.4 綜合討論 112
5.1.4.1 不同類型低鹼性混凝土之代表配比 112
5.1.4.2 不同類型低鹼性混凝土之綜合討論 118
5.2 不同類型之低鹼性混凝土在處置設施中的運用情況 119
5.2.1 裂縫填補 119
5.2.2 隧道襯砌 120
5.2.3 封塞混凝土 121
5.2.4 混凝土梁及底板等 123
5.3 低鹼性水泥系材料應用於高放處置設施之建議 125
5.4 不同鹼度及溫度對膨潤土膨脹性能之影響探討 127
5.4.1 NaOH溶液系列 127
5.4.1.1 鹼度環境變化 127
5.4.1.2 鹼度與溫度環境同時變化 128
5.4.2 混凝土孔隙溶液系列 129
5.4.2.1 常溫環境 130
5.4.2.2 中、高溫環境 130
5.4.3 綜合討論 131
第 6 章 結論與建議 132
6.1 結論 132
6.2 建議 133
參考文獻 135
附錄 141
參考文獻 [1] Schneider, M.,Harms, R.,Jungjohann, A. and Thurmann, A. (2019) “World Nuclear Waste Report 2019 - Focus Europe.” HBS, Germany.
[2] Bodén, A. and Sievänen, U. (2005), “Low-pH injection grout for deep repositories.” POSIVA-Working Report 2005-24, Posiva, Olkiluoto.
[3] Pusch, R. and Svemar, C. (2004). “Comparison of repository concepts &recommendations for design and construction of future safe repositories.” International Progress Report IPR-04-55, SKB, Stockholm.
[4] SKB. (2017). “Safety functions, performance targets and technical design requirements for a KBS-3V repository.” Posiva SKB Report 01, SKB and Posiva.
[5] SKB. (2006). “Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation.” SKB TR-06-09, SKB, Stockholm.
[6] Margit S., and Timo V. (2005). “Long-term safety aspects of the use of cement in a repository for spent fuel.” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16. pp. 27-40.
[7] Haaramo, M., and Lehtonen, A. (2009). “Principle plug design for deposition tunnels.” POSIVA Working Report 2009-38, Posiva, Finland.
[8] Richard, V. (2012). “Low-pH concrete plug for sealing the KBS-3V deposition tunnels.” SKB R-11-04, SKB, Stockholm.
[9] SKB. (2010). “Design, production and initial state of the backfill and plug in deposition tunnels.” SKB TR-10-16, SKB, Stockholm.
[10] 莊文壽、洪錦雄、董家寶,(2000),「深層地質處置技術之研究」,核研季刊,第三十七期、第44-54頁。
[11] 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[12] 陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
[13] 吳柏林,(2005),「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢。
[14] 張皓鈞,(2011),「放射性廢棄物最終處置場緩衝材料與混凝土障壁的交互作用」,碩士論文,國立中央大學土木工程研究所,中壢。
[15] Taborowski, T., Chukharkina, A.B.A., Blom, A. and Pedersen., K. (2019). “Bacterial presence and activity in compacted bentonites.” DELIVERABLE D2.4, v2, MIND, Sweden.
[16] Mitchell, J.K. and Soga, K (2005). Fundamentals of Soil Behaviour, 3rd ed., John Wiley, New York.
[17] Madsen, F.T., and Muller-Vonmoos, M. (1989). “The swelling behavior of clays.” Applied Clay Science, Vol. 4, pp. 143-156.
[18] 李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[19] Bauer, A., Lanson, B., Ferrage, E., Emmerich, K., Taubald, H., Schild, D. and Velde, B. (2006). “The fate of smectite in KOH solutions.” American Mineralogist, Vol. 91(8-9), pp. 1313-1322.
[20] 項國聖、徐永福、王毅、方圓,(2018),「鹼溶液侵蝕下高廟子膨潤土膨脹變形的變化規律」,上海交通大學學報,第五十二卷,第二期,第141-146頁。
[21] Fernandez, R., Cuevas, J., Sanchez, L,. Villa, R.V.D.L. and Leguey, S,. (2006). “Reactivity of the cement-bentonite interface with alkaline solutions using transport cells.” Applied Geochemistry, pp. 977-992.
[22] 陳寳、張會新、陳萍,(2013),「高鹼溶液對高廟子膨潤土侵蝕作用的研究」,岩土工程學報,第三十五卷,第一期,第181-186頁。
[23] Nuclear Decommissioning Authority. (2010). “Geological Disposal-Generic disposal system technical specification.” NDA Report No. NDA/RWMD/044, NDA, UK.
[24] Villar, M.V., Gómez-Espina, R. and Lloret, A. (2010). “Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2(1), pp. 71-78.
[25] Bag, R. (2011). “Coupled Thermo-Hydro-MechanicalChemical Behaviour Of MX80 Bentonite In Geotechnical Applications.” Thesis submitted in candidature for the degree of Doctor of Philosophy, Cardiff University, UK.
[26] Yu, H.H, Sun, D. and Gao, Y.(2018).“Effect of NaCl Solution on Swelling Characteristics of Bentonite with Different Diffuse Double Layers.” Applied Magnetic Resonance, Vol. 49, pp.725-737.
[27] 苗永紅、陸強、朱傑、徐桂中,(2017),「海水鹽度對黏土礦物基本特性影響規律研究」重慶交通大學學報(自然科學版),第三十六卷,第二期,第71-77頁。
[28] Alonso, M.C., Garcia, J.L., Hidalgo, A. and Fernández L. (2010), “Development and application of low-pH concretes for structural purposes in geological repository systems.” Woodhead Publishing Series in Energy, Vol. 9, pp. 286-322.
[29] Taylor, H.F.W. (1987), “A method for predicting alkali ion concentrations in cement pore solutions.” Advances in Cement Research, Vol. 1, pp.5–16.
[30] García, J.L., Alonso, M.C., Hidalgo, A. and Fernández, L. (2007). “Design of low-pH cementitious materials based on functional requirements,” R&D on low-pH cement for a geological repository, Third ESDRED workshop, Paris, June 13-14, 2007, pp. 40-51.
[31] Cau Dit Coumes, C., Codina, M., Bourbon, X., Leclercq, S., and Courtois, S. (2005). “Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories.” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16, pp.77-90.
[32] Savage, D., and Benbow, S. (2007). “Low pH Cements,” SKI Report 2007:32.
[33] Kobayashi, Y., Yamada, T., Matsui, H., Nakayama, M.,Mihara, M., Naito, M. and Yui, M. (2007). “Development of low-alkali cement for application in a JAEA URL”, Proc R&D on Low-pH Cement for a Geological Repository, 3rd Workshop, June 13-14, 2007, pp. 98-106.
[34] Codina, M., Cau-dit-Coumes, C., Bescop, P., Verdier, J., Ollivier, J.P., (2008), “Design and characterization of low-heat and low-alkalinity cements”, Cement and Concrete Research, Vol. 38, pp. 437-448.
[35] Bamforth, P.B., Baston, G.M.N., Berry, J.A., Glasser, F.P., Heath, T.G., Jackson, C.P., Savage, D. and Swanton, S.W. (2012). “Cement materials for use as backfill, sealing and structural materials in geological disposal concepts. A review of current status,” Serco, RP0618-252A, UK.
[36] Johanna, H., Tapani, L., Ursula, S. and Anna, K. (2005). “Selective stabilisation of deep core drilled boreholes using low-ph cement,” R&D on Low-pH cement for a geological repository, second low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June 15-16. pp. 122-137.
[37] Kronlöf, A. (2004). “Injection Grout for Deep Repositories-Low pH Cementitious Grout for Larger Fractures: Testing Technical Performance of Materials”, Posiva Oy, Olkiluoto, Finland. Working Report, pp. 41-45.
[38] Holt, E. (2007). “Durability of low-pH injection grout”, Posiva Working Report, pp. 57-63.
[39] Ittner, H. and Christiansson, R. (2017). “Rock support options for deposition tunnels,” SKB R-11-28, SKB, Stockholm.
[40] Bodén, A. and Pettersson, S. (2011). “Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials.” SKB R-11-08, SKB, Stockholm
[41] Grandia, F., Galíndez, J., M., Molinero, J. and Arcos, D. (2010). “Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site.” SKB TR-10-62, SKB, Stockholm.
[42] Subhan, A., and Umar, A,. (2016). “Characterization of Self-Compacting Concrete.” Procedia Engineering Vol.173. pp. 814-821.
[43] Vogt, C., Lagerblad, B., Wallin, K., Baldy, F. and Jonasson, J-E. (2009). “Low pH self-compacting concrete for deposition tunnel plugs.” SKB R-09-07, SKB, Stockholm.
[44] Holt, E., Leivo, M. and Vehmas, T. (2014). “Low-pH concrete developed for tunnel end plugs used in nuclear waste containment,” Concrete Innovation Conference 2014, June 11-13. Oslo, Norway.
[45] Vehmas, T., Schnidler, A., Löija, M., Leivo, M. and Holt, E. (2017). “Reference Mix Design and Castings for Low-pH Concrete For Nuclear Waste Repositories.” Paper presented at the Proceedings of the First Annual Workshop of the HORIZON 2020 CEBAMA Project (KIT Scientific Reports ; 7734), Barcelona, Spain.
[46] Vehmas, T., Leivo, M., Holt, E., Alonso, M.C., García, J.L., Fernández, Á., Isaacs, M., Rastrick, E., …Schäfer, T. (2018). “Cebama Reference Mix Design for Low-pH Concrete and Paste, Preliminary Characterisation.” Paper presented at the Proceedings of the Second Workshop of the HORIZON 2020 CEBAMA Project (KIT Scientific Reports 7752), Espoo, Finland
[47] Nakayama, M., Sato, H., Sugita, Y., Ito, S., Minamide, M. and Kitagawa, Y. (2010). “Low alkaline cement used in the construction of a gallery in the Horonobe Underground Research Laboratory.” Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM.
[48] Nakayama, M., Sawada, S., Sato, H. and Sugita, Y. (2012). “Study on Applicability of Low Alkaline Cement in Horonobe Underground Research Laboratory Project-In-situ Experiment at 250m Gallery.” JAEA-Research 2012-023, Hokkaido, Japan. (in Japanese).
[49] SENO, Y., NAKAYAMA, M., SUGITA, Y., YANAI, K. and Fujita, T. (2016). “Basic Properties of the Concrete using the Low Alkaline Cement (HFSC) Developed.” JAEA-Research 2016-011, Hokkaido, Japan. (in Japanese).
[50] Alonso, J., García-Siñeriz, J.L., Bárcena, I., Alonso, M.C., Fernández L.L., García, J.L., Fries, T., Pettersson, S., Bodén, A. and Salo., J.P. (2004) “Deliverable 1 Module 4 WP-1.” EC Contract FI6W-CT-2004508851; European Commission: Strasbourg, France.
[51] Lerouge, C., Gaboreau, S., Grangeon, S., Claret, F., Warmont, F., Jenni, A., Cloet, V. and Mader, U. (2017). “In situ interactions between Opalinus Clay and Low Alkali Concret.” Physics and Chemistry of the Earth, 99, 3-21.
[52] González-Santamaría, D.E., Angulo, M., Ruiz, A.I., Fernandez, R., Ortega, A. and Cuevas, J. (2018). “Low-pH cement mortar-bentonite perturbations in a small-scale pilot laboratory experiment.” Clay Minerals, Vol. 53, pp.237-254.
[53] 胡家銘,(2017),「低鹼性膠結材應用於放射性廢棄物最終處置場封塞混凝土之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[54] 張雅惠,(2018),「最終處置場低鹼性封塞混凝土膠結材優化及其與處置環境互動研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[55] 翁伯琦,(1985),「酸鹼理論與溶液pH值計算」,福建農業科技,第三期,第51-52頁。
[56] Choi, P., Yeon, J.H., and Yun, K.K. (2016). “Air-void structure, strength, and permeability of wet-mix shotcrete before and after shotcreting operation: The influences of silica fume and air-entraining agent.” Cement and Concrete Composites. Vol.70. pp. 69-77.
[57] Zhao, H., Sun, W., Wu, X. and Gao, B. (2020). “Influence of Addition of Polycarboxylate-Based Superplasticizer on Properties of High Performance Concrete.” Journal of Materials in Civil Engineering, 32(3): 04020009.
[58] Toledano-Prados, M., Lorenzo-Pesqueira, M., González-Fonteboa, B. and Seara-Paz, S. (2013). “Effect of Polycarboxylate Superplasticizers on Large Amounts of Fly Ash Cements”. Construction and Building Materials, Vol. 48 pp.628-635.
[59] Han, J., Sun, Q., Xing, H.F., Zhang, Y.L. and Sun, H. (2017). “Experimental study on thermophysical properties of clay after high temperature.” Applied Thermal Engineering, Vol. 111, pp.847-854
指導教授 王韡蒨 陳世晃 審核日期 2021-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明