博碩士論文 108322028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.223.43.152
姓名 蔡秉庭(Ping-Ting Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
(Developing an intelligent structure inspection system based on BIM and wireless wake-up IoT devices)
相關論文
★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks
★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
★ 具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究★ 生物啟發式攀爬機器人應用於外牆磁磚缺陷檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 根據台灣交通公路總局調查發現台灣橋樑平均年齡為三十四年,而住宅平均屋齡為28.3年,人的身體都需要做定期的健康檢查,更何況是人們長期使用的結構物也會隨著時間老化,可能超出使用壽命以及預期設計不足,造成坍塌意外傷亡,而現今傳統的健康安全檢測方法大多侷限於單一構件進行檢測,且收集的數據為有線傳輸,對於面對大型結構設施如橋樑、社區大廈,則會帶來檢測上的困難。近年來,隨著物聯網技術竄升與工業4.0的革命,利用多元感測器佈署監測設備狀況與環境參數等,並以無線傳輸與雲端的技術收集不同來源的訊息,透過客製化與自動化讓作業流程最佳化且更有效率。

本研究將以工業4.0的精神,由建築資訊模型(Building Information Modeling, BIM) 3D模擬與物聯網技術組成智慧化結構物健康安全檢測系統,整合Smart Tag和LoRa(Long Range Wide Area)研發組成「無線喚醒智慧應變檢測裝置」,由低功耗嵌入式系統整合多個感測數據,透過LoRa無線傳輸至行動閘道器(Mbed based Moving Gateway),完成初步的結構物健康安全檢測物聯網(IOT)架構,並由訊息序列遙測傳輸MQTT(Message Queuing Telemetry Transport)發布與訂閱的機制於Node-Red開發工具平台建置即時數據監控的網路應用程式介面(Web UI),透過MySQL雲端資料庫將收集資料,由Dynamo視覺設計平台將感測數據即時匯入模型內做後續分析,成為動態的建築資訊模型(Building Information Modeling ,BIM),以IOT的技術與BIM作互動,使在未來定期檢測、維護營運階段更能迅速、直覺性地看出結構桿件的健康狀況。為了驗證此IOT架構與無線喚醒智慧應變檢測裝置實際成果,本論文實際設計了一根混凝土鋼筋梁,並於內部鋼筋與外部混泥土黏著應變計利用Autodesk Revit建立3D建築資訊模型,基於Dynamo成功地在Revit介面上以動態式顏色變化來表達結構桿件的健康狀況,並且也藉由實驗中驗證了「無線喚醒智慧應變檢測裝置」的精度與可行性。
摘要(英) According to the Directorate General of Highways (MOTC) of Taiwan, the average life span of bridges in Taiwan is 34 years old. Even human bodies need regular health checks, let alone structures we use regularly, which can wear out as times pass, or exceed service life, or structure collapse due to insufficiency of expected design. However, the traditional inspection methods are most often confine to single-construction inspection using wire to transmit data, which will pose difficulty on bridges, flats such large scale structures. With the rise of the Internet of Things and the revolution of Industry 4.0, the use of multi-sensor deployment monitoring the equipment conditions and environmental parameters with wireless transmission and cloud technology with from various source, to achieve customization automation mode, and to optimize the operational process and efficiency.

This research will follow the spirit of industry 4.0, combining Building Information Modeling(BIM) 3D simulation and Internet of Things to an intelligent structure safety detection system, develops and integrates Smart Tag and LoRa (Long Range Wide Area) into wireless smart strain detection devices. Through the low-energy embedded system integrates various sensing data and transmits it to the mobile gateway (Mbed based Moving Gateway) wirelessly through LoRa and complete the preliminary structure of the health and safety inspecting Internet of Things (IoT) framework, and use the Message Queuing Telemetry Transport (MQTT) publishing and subscription mechanism to build a real-time data monitoring network application program interface on the Node-Red development tool platform (Web UI), and then use MySQL cloud database to collect all real-time data. To validate the actual results of the IoT framework and the wireless wake-up smart strain detection device, this paper designed a beam on the inner steel bar and the outer concrete to bond the strain gauge. The information model was created by Autodesk Revit and combined with the Dynamo visual design platform to real-time sensed data. Then import it into the model for subsequent analysis and become a dynamic building information model (BIM). By using IOT technology to interact with BIM makes it possible to inspect swiftly and intuitively the health status of structural members in the future periodical detection, maintenance, and operation phases.
關鍵字(中) ★ 結構健康檢測
★ 物聯網
★ 建築資訊模型
關鍵字(英) ★ Smart Tag
★ LoRa
★ MQTT
★ Dynamo
★ Revit
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
二、 文獻回顧 5
2-1 結構物之健康安全技術 5
2-2 BIM數位孿生 9
三、 研究方法 13
3-1 基於BIM與無線喚醒智慧應變檢測裝置之智慧化結構檢測系統架構 13
3-2系統硬體設計與原型開發 17
3-2-1無線喚醒智慧應變檢測裝置運作之概念 17
3-2-2 無線喚醒智慧應變檢測裝置硬體設計與開發 19
3-3 軟體架構與資料傳輸流程 33
3-3-1基於NODE-RED平台建置之結構物健康安全檢測介面與MYSQL資料庫結構 37
3-3-2 BIM視覺化決策應用 40
四、實驗規劃與設計 47
4-1 智慧標籤觸發實驗 47
4-2無線喚醒智慧應變檢測裝置與數據紀錄器(TML TDS-540)校正 49
4-3 鋼筋混凝土梁加載實驗 51
五、實驗結果與討論 67
5-1 智慧標籤觸發實驗 67
5-2無線喚醒智慧應變檢測裝置與數據紀錄器(TML TDS-540)校正 69
5-3 鋼筋混凝土梁加載實驗 71
5-3-1基於無線喚醒智慧應變檢測裝置探討鋼筋混凝土梁力學行為 71
5-3-2視覺化檢測鋼筋混泥土梁之力學行為 87
六、結論與未來展望 90
6-1 結論 90
6-2 未來建議 91
七、參考文獻 92
參考文獻 [1] H. Zhang, L. Liao, R. Zhao, J. Zhou, M. Yang, and R. Xia, "The non-destructive test of steel corrosion in reinforced concrete bridges using a micro-magnetic sensor," Sensors, vol. 16, no. 9, p. 1439, 2016.
[2] S. Shams, A. Ghorbanpoor, S. Lin, and H. Azari, "Nondestructive testing of steel corrosion in prestressed concrete structures using the magnetic flux leakage system," Transportation Research Record, vol. 2672, no. 41, pp. 132-144, 2018.
[3] ALMATEC. "Russia Intro wire rope / wire rope testing equipment." https://www.almatec.com.tw/index.php/product/mfl.html
[4] A. Sharma, S. Sharma, S. Sharma, and A. Mukherjee, "Investigation of deterioration in corroding reinforced concrete beams using active and passive techniques," Construction and Building Materials, vol. 161, pp. 555-569, 2018.
[5] S. Beniwal and A. Ganguli, "Defect detection around rebars in concrete using focused ultrasound and reverse time migration," Ultrasonics, vol. 62, pp. 112-125, 2015.
[6] B. Szymanik, P. K. Frankowski, T. Chady, and C. R. A. John Chelliah, "Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors," Sensors, vol. 16, no. 2, p. 234, 2016.
[7] Q. Feng, Q. Kong, and G. Song, "Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers," Measurement, vol. 88, pp. 345-352, 2016.
[8] C. Merzbacher, A. D. Kersey, and E. Friebele, "Fiber optic sensors in concrete structures: a review," Smart materials and structures, vol. 5, no. 2, p. 196, 1996.
[9] S. Li and Z. Wu, "Development of distributed long-gage fiber optic sensing system for structural health monitoring," Structural Health Monitoring, vol. 6, no. 2, pp. 133-143, 2007.
[10] C. G. Berrocal, I. Fernandez, and R. Rempling, "Crack monitoring in reinforced concrete beams by distributed optical fiber sensors," Structure and Infrastructure Engineering, vol. 17, no. 1, pp. 124-139, 2021.
[11] GOM, "ARAMIS Adjustable
The modular measuring system for 2D and 3D analyses," 2010. [Online]. Available: https://www.gom.com/index.php?id=1401&L=16.
[12] Z. Broth and N. A. Hoult, "Dynamic distributed strain sensing to assess reinforced concrete behaviour," Engineering Structures, vol. 204, p. 110036, 2020.
[13] T. P. Ambrose, D. R. Huston, and P. L. Fuhr, "Lessons learned in embedding fiber sensors into large civil structures," in Fiber Optic Smart Structures and Skins V, 1993, vol. 1798: International Society for Optics and Photonics, pp. 194-199.
[14] L. Fan, X. Tan, Q. Zhang, W. Meng, G. Chen, and Y. Bao, "Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor," Engineering Structures, vol. 204, p. 110039, 2020.
[15] S. Boschert and R. Rosen, "Digital twin—the simulation aspect," in Mechatronic futures: Springer, 2016, pp. 59-74.
[16] S. Madakam, V. Lake, V. Lake, and V. Lake, "Internet of Things (IoT): A literature review," Journal of Computer and Communications, vol. 3, no. 05, p. 164, 2015.
[17] S. Tang, D. R. Shelden, C. M. Eastman, P. Pishdad-Bozorgi, and X. Gao, "A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends," Automation in Construction, vol. 101, pp. 127-139, 2019.
[18] A. Rossi et al., "Embedded smart sensor device in construction site machinery," Computers in Industry, vol. 108, pp. 12-20, 2019.
[19] J. Teizer et al., "Construction resource efficiency improvement by Long Range Wide Area Network tracking and monitoring," Automation in Construction, vol. 116, p. 103245, 2020.
[20] C.-m. Wu, H.-l. Liu, L.-m. Huang, J.-f. Lin, and M.-w. Hsu, "Integrating BIM and IoT technology in environmental planning and protection of urban utility tunnel construction," in 2018 IEEE International Conference on Advanced Manufacturing (ICAM), 2018: IEEE, pp. 198-201.
[21] K. Kang, J. Lin, and J. Zhang, "BIM-and IoT-based monitoring framework for building performance management," Journal of Structural Integrity and Maintenance, vol. 3, no. 4, pp. 254-261, 2018.
[22] L. Bottaccioli et al., "Building energy modelling and monitoring by integration of IoT devices and building information models," in 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), 2017, vol. 1: IEEE, pp. 914-922.
[23] W. Natephra and A. Motamedi, "Live data visualization of IoT sensors using Augmented Reality (AR) and BIM," in ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, 2019, vol. 36: IAARC Publications, pp. 632-638.
[24] M. Valinejadshoubi, O. Moselhi, A. Bagchi, and A. Salem, "Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings," Sustainable Cities and Society, vol. 66, p. 102602, 2021.
[25] M. O′Shea and J. Murphy, "Design of a BIM integrated structural health monitoring system for a historic offshore lighthouse," Buildings, vol. 10, no. 7, p. 131, 2020.
[26] J. Teizer et al., "Internet of Things (IoT) for integrating environmental and localization data in Building Information Modeling (BIM)," in ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, 2017, vol. 34: IAARC Publications.
[27] X.-S. Chen, C.-C. Liu, and I.-C. Wu, "A BIM-based visualization and warning system for fire rescue," Advanced Engineering Informatics, vol. 37, pp. 42-53, 2018.
[28] W.-F. Cheung, T.-H. Lin, and Y.-C. Lin, "A real-time construction safety monitoring system for hazardous gas integrating wireless sensor network and building information modeling technologies," Sensors, vol. 18, no. 2, p. 436, 2018.
[29] Y.-C. Lin and W.-F. Cheung, "Developing WSN/BIM-based environmental monitoring management system for parking garages in smart cities," Journal of Management in Engineering, vol. 36, no. 3, p. 04020012, 2020.
[30] B. Dave, A. Buda, A. Nurminen, and K. Främling, "A framework for integrating BIM and IoT through open standards," Automation in Construction, vol. 95, pp. 35-45, 2018.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明