以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:10 、訪客IP:3.146.35.53
姓名 簡宏任(Hung-Jen Chien) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 透水混凝土鋪面加勁設計之研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2026-8-1以後開放) 摘要(中) 隨著環境的變遷與環保意識的抬頭,透水混凝土鋪面的設置逐漸普及,以改善都市熱島效應,而為了維持良好的滲透性能,因此孔隙率設計要求較高,其透水混凝土強度則受影響,當孔隙率越大,強度則越低。故本研究提出傳統透水混凝土鋪面滲透性能與受較重型車輛之抗彎強度,並加入補強材料作為本研究之主軸。
本研究主要探討有加勁材透水混凝土斷面設計,但目前透水混凝土均使用在輕交通量道路,且為純混凝土斷面,故研究設計以實驗方式來求有加勁材之透水混凝土斷面強度相關設計參數。相關設計參數如透水混凝土彈性模數、開裂模數及斷面強度矩形應力塊參數等,均有考慮一般單次荷載與反覆荷載受力行為差異。
本研究主要結論為:
探討反覆荷載後對透水混凝土鋪面版的影響,比較單次與反覆荷載後的抗壓強度與彈性模數,發現兩者荷載方式之結果相近。
研究數據統計,透水混凝土強度f_c^′=15~40MPa,得出透水混凝土之彈性模數E_c=3072√(f_c′),開裂模數fr=0.86√(f_c′)之經驗公式。
文中亦研究透水混凝土應力應變模型研究,發現與Popovics所提出的一般混凝土應力應變曲線模型相近。
再者,乃提出不同受力階段透水混凝土等值應力塊參數α_1、β_1,供日後透水混凝土斷面彎矩設計作參考。
文中對透水混凝土加勁材之挑選,乃建議使用耐腐蝕之鍍鋅鋼線網格或玻璃纖維網格,兩者均可設計在使用載重與極限載重階段。
關鍵字:反覆荷載透水混凝土鋪面、加勁纖維、玻璃纖維網格、鋼線網格、抗壓強度、彈性模數、開裂模數、混凝土等值應力塊。摘要(英) Nowadays, pervious concrete(so called as PC) is one of options to reduce the urban heat island effect. However, the compressive strength of the PC is much lower than the normal concrete because of its nature in higher porosity for the permeability requirement. As the porosity increases,so as the strength of PC decrease. Therefore, in order to improve the resistance of flexural strength for the heavier vehicles on the pervious concrete pavement, this study will be focused on the plain PC strengthened with some advanced reinforcing materials.
The purpose of the topic is to discuss the cross-section design of reinforced pervious concrete(so called as RPC). This is because the current PC without reinforcing materials is commonly used in the light traffic. Therefore, the study plans experimental methods to investigate the design parameters for RPC cross-section strength. Relevant design parameters such as PC elastic modulus, modulus of rupture, and section at strength using rectangular stress block method etc., will be discussed, including the effects on the mono-cycle loading and repeated loading.
The main conclusions of this study are:
The effect of repeated loads on the PC pavement was discussed in the compressive strength and elastic modulus. It was shown that there was no obvious difference between two loading protocal.
The statistics showed that the testing of PC strength f_c^′ was 15~40 MPa, and the empirical formula of the elastic modulus of PC E_c=3072√(f_c′) and the modulus of rupture fr=0.86√(f_c′) were obtained.
The study on the stress-strain model of PC found that PC stress-strain behavior was similar to the general concrete model proposed by Popovics.
The equivalent stress block parameters α_1 and β_1 of the PC are proposed for providing the design of the bending moment of the PC cross-section at different load stages.
For the selection of PC reinforcing materials for PC, it is recommended to use galvanized wire grid or glass-fiber grid to resist corrosion.This materials can also be designed in the service load and ultimate load stage.
Keywords:pervious concrete pavement of repeated load, reinforcing fiber, glass-fiber grid, steel-reinfored grid, compressive strength, elastic modulus, modulus of rupture, equivalent stress block of concrete關鍵字(中) ★ 反覆荷載透水混凝土鋪面
★ 加勁纖維
★ 抗壓強度
★ 彈性模數
★ 開裂模數
★ 混凝土等值應力塊關鍵字(英) ★ pervious concrete pavement of repeated load
★ reinforcing fiber
★ compressive strength
★ elastic modulus
★ modulus of rupture
★ equivalent stress block of concrete論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的及方法 2
第二章 文獻回顧 3
2.1 透水混凝土 3
2.1.1 孔隙率對抗壓強度之影響 4
2.2 透水混凝土加勁 8
2.3 混凝土彈性模數與撓曲開裂模數 13
2.3.1 彈性模數(Ec) 13
2.3.2 撓曲開裂模數(fr) 15
2.4 混凝土應力應變模型 18
2.5 混凝土應力應變曲線應用於斷面分析 20
2.6 FRP筋梁之撓曲強度設計 23
2.6.1 FRP筋破壞模式 23
2.6.2 彎矩強度折減因子(strength reduction factor) 26
2.6.3 FRP筋最小配筋量(minimum FRP reinforcement) 27
第三章 研究規劃與實驗步驟 28
3.1 研究規劃與製作 28
3.2 試驗配比及編號 32
3.2.1 試體配比 32
3.2.2 試體編號 32
3.3 試驗材料 34
3.3.1 粗粒料 34
3.3.2 卜特蘭卜特蘭II型水泥 34
3.3.3 拌和水 36
3.3.4 強塑劑 36
3.3.5 玻璃纖維網 38
3.3.6 鋼線網 38
3.4 試體設計 39
3.5 試體製作 40
3.6 實驗設備 41
3.6.1 萬能試驗機 41
3.6.2 靜態資料擷取器 41
3.6.3 量測系統 42
3.6.4 拌和機與Proctor夯錘 43
3.6.5 恆溫式比重量測設備 44
3.7 材料試驗項目 45
3.7.1 最佳配比設計與製作 45
3.7.2 抗壓試驗 48
3.7.3 抗彎強度(撓曲強度) 48
3.7.4 彈性模數應變環 49
3.7.5 透水係數量測(變水頭試驗) 49
3.7.6 孔隙率量測 50
3.7.7 玻璃纖維網強度量測 51
3.7.8 鋼線網強度量測 52
3.8 反覆荷載實驗說明 53
第四章 實驗結果與討論 54
4.1 透水混凝土與加勁材之材料試驗 54
4.1.1 透水混凝土透水係數及孔隙率 54
4.1.2 加勁材抗拉強度與彈性模數試驗 56
4.1.3 透水混凝土圓柱試體抗壓強度與彈性模數 59
4.1.4 透水混凝土彈性模數值討論 62
4.2 透水混凝土應力應變模型 65
4.2.1 單次抗壓應力應變曲線 65
4.2.2 反覆荷載後抗壓與單次抗壓應力應變曲線差異 68
4.3 梁開裂強度測試結果 69
4.4 梁反覆荷載與單次荷載力學行為比較 72
4.4.1 梁受反覆荷載期間受力行為 72
4.4.2 反覆載重後之單次荷載破壞觀察 82
4.5 加勁透水混凝土斷面不同受力階段等值應力塊參數 93
4.5.1 加勁透水混凝土斷面強度設計 93
4.5.2 鍍鋅鋼線網加勁斷面設計 94
4.5.3 玻璃纖維網加勁斷面設計 96
第五章 結論與建議 99
5.1 結論 99
5.2 建議 100
參考文獻 102參考文獻 [1] T. Asaeda, and V.T. Ca, “Characteristics of Permeable Pavement during Hot Summer Weather and Impact on the Thermal Environment”, Building and Environment, Vol 35(4), pp.363-375, 2000.
[2] R. Zhong, and K. Wille, “Compression Response of Normal and High Strength Pervious Concrete”, Construction and Building Materials, Vol 109, pp.177-187, 2016.
[3] M. Aamer Rafique Bhutta, K. Tsuruta, and J. Mirza, “Evaluation of High-Performance Porous Concrete Properties”, Construction and Building Materials, Vol 31, pp.67-73, 2012.
[4] J. T. Kevern, “Operation, and Maintenance of Pervious Concrete Pavements”, Presented at 90th Annual Meeting of the Transportation Research Board, Washington, D.C., 2011.
[5] 宋中南、石雲興「透水混凝土及其應用技術」,中國建築工業出版社,2011年。
[6] O. A. Ahmad, M. Awwad, “Effects of Polypropylene Fibers Additions on Compressive and Tensile Strengths of Concrete”, International Journal of Civil and Environmental Engineering, ISSN:1701-8285, Vol.37, Issue.1, pp.1365-1372, 2015.
[7] 謝宜呈,「高強度纖維透水混凝土磨耗與堵塞維護之初步研究」,國立中央大學,碩士論文,2020年。
[8] X. Meng, Y. Chi, Q. Jiang, R. Liu, K. Wu and S. Li, “Experimental Investigation on the Flexural Behavior of Pervious Concrete Beams Reinforced with Geogrids”, Construction and Building Materials, pp.275-284, 2019.
[9] 中國土木水利工程學會,混凝土工程設計規範與解說,土木401-110,2021年。
[10] 廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程期刊,第31卷,第3期,pp. 5-31,2016年。
[11] S. Popovics, “A Review of Stress-Strain Relationships for Concrete,” ACI Journal, V.67, N.3, pp.243-248, 1970.
[12] M. P. Collins, and D. Mitchell, Prestressed Concrete Structures, Prentice-Hall, New Jersey, 1991.
[13] J. Moehle, Seismic Design of Reinforced Concrete Buildings, McGraw-Hill Education, United States of America, 2015.
[14] C. S. Whitney, “Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression,” ACI Journal Proceedings, V.33, No.3, pp. 483-498, Mar. 1937.
[15] H. Rüsch, “Researches Toward a General Flexural Theory for Structural Concrete,” ACI Journal, Proceedings V. 57, pp. 1-28, July 1960.
[16] ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete, ACI 318-14, American Concrete Institute, 2014.
[17] 江佳良,「模擬透水混凝土應用在鋪面工程對於水質淨化之初步研究」,朝陽科技大學,碩士論文,2012年。
[18] ASTM standards : C1688, “Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete,” Annual Book of ASTM Standards.
[19] San Marcos , Hayward, “Comparing Design Void Content with Actual Void Content of Laboratory Prepared Pervious Concrete,” Materials Sciences and Applications, pp.596-613,2018.
[20] ASTM standards : C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” Annual Book of ASTM Standards.
[21] ASTM standards : C469, “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens,” Annual Book of ASTM Standards.
[22] ACI 522R-06, “Pervious Pavement Design,” Reported by ACI Committee 522.
[23] 吳守展,「高強度透水混凝土磨耗與堵塞維護之初步研究」,國立中央大學,碩士論文,2019年。
[24] P. D. Tennis, M. L. Leming, and D. J. Akers, “Pervious Concrete Pavements,” Portland Cement Association,2004.
[25] S. E. PILZ, et al, “Pervious concrete: study of dosage and polypropylene fibers addiction,” Revista IBRACON de Estruturas e Materiais, Vol 12, pp.101-121, 2019.
[26] ASTM standards : C78/C78M-18, “Standard Test Method for Flexural Strength of Concrete,” Annual Book of ASTM Standards.
[27] A. Kia, H.S. Wong and C. R. Cheeseman. “High-Strength Clogging Resistant Permeable Pavement” International Journal of Pavement Engineering, 2019.
[28] 中華民國國家標準CNS 2111, “金屬材料拉伸試驗法,”
[29] D. Karsan, and J. O. Jirsa, “Behavior of Concrete Under Compressive Loadings,” Journal of Structural Division, ASCE, Vol. 95, No. ST12, Dec. 1969, pp. 2543-2563,1969.
[30] ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete, ACI 318-19, American Concrete Institute, 2019.
[31] 洪世峰,「SD 690鋼筋之混凝土梁高週次疲勞試驗」,國立中央大學,碩士論文,2020年。
[32] ACI Committee 440, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI 440.1R-06, American Concrete Institute, First Print, May 2006.指導教授 王勇智(Yung-Chih Wang) 審核日期 2021-7-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare