博碩士論文 108322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.191.223.40
姓名 塔莉塔(Siti Talitha Rachma)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討都市熱島效應對臺北地區午後雷雨及地下水之影響
(Interaction of Urban Heat Island with Afternoon Thunderstorm and Groundwater Variations in Taipei, Taiwan)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 運用訊號分析方法於地下水資源旱災韌性與風險評估★ 水文地質條件不確定性下的地下水時空變化模擬
★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型★ 以深度學習方法建立地下水位預警之風險評估模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 以系統動態與貝氏網路探討地表水與地下水的聯合管理策略
★ 探討臺灣地震活動特徵與環境變數相關性分析★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
★ 探討強風是否為崩塌致災因子與建立崩塌機器學習模型★ 以小波分析技術建立創新乾旱時空分佈指標與氣候變遷乾旱風險分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究顯示地球的平均溫度正逐年上升,而都市化城市變暖的速度快於其周圍農村地區之現象稱為都市熱島效應 (UHI),UHI導因於都市地區之人為活動,其可能在區域或全球範圍內影響天氣和氣候。因此本研究目的在探討 UHI 對臺北地區水文變化、雷雨和地下水位的影響,以作為都市發展規劃的參考依據。為了從時域和頻率探討不同因子間非線性關係的具體細節和趨勢,本研究採用了希爾伯特-黃變換(HHT),在數個測站之間比較 HHT分析結果;亦透由經驗正交函數(EOF)萃取臺北市午後雷雨的主要空間分布特徵。結果顯示,臺北市都市化過程使過去 57 年來 UHI 的強度增加了 1.5°C,臺北地區各測站20年來以10年14.7%的速率從0.2°C增加到1.1°C;根據EOF分析結果,自1998年以來,42.36%的雷雨發生在市區而非其他地區,而市區地下水位總體呈上升趨勢,隨著雷雨事件的增加,都市內發生淹水事件的機率將增加,因此需要適當的應對政策及措施。
摘要(英) Each year, average of Earth’s temperature rises and the urbanized cities are warming at a significant rate than its surrounding rural area. This phenomenon is called Urban Heat Island (UHI). UHI is a consequence of human activities in urban area and it has possibilities to impact weather and climate on regional or global scale. The objective of this study is to understand UHI impact to hydrological variations, thunderstorms and groundwater level, in Taipei area in order to be an input of consideration for urban development. In order to reveal specific details and trend of non-linear relation from both time domain and frequency, Hilbert-Huang Transform (HHT) is adopted in this study. The HHT trend results are later compared between each station. Later, empirical orthogonal function (EOF) also being used to extract main spatial pattern of afternoon thunderstorm in Taipei city. The results show that the urbanization in Taipei city contribute to increase of UHI intensity for the past 57 years with 1.5 oC. While the increase of various stations in Taipei area for 20 years starts from 0.2 to 1.1 oC and also the increasement of 14,7%/decades. According to EOF analysis, there is 42.36% of thunderstorm that initiated and happened in the urban areas rather than in other area since 1998. While overall of groundwater level in urban areas has increasing trend. Proper mitigation is needed as the possibilities of sudden flooding in the urban will rises along with increasing of thunderstorms events.
關鍵字(中) ★ 城市熱島
★ 雷雨
★ 地下水位
★ 希爾伯特-黃變換
★ 經驗正交函數
關鍵字(英) ★ urban heat island
★ thunderstorm
★ groundwater level
★ Hilbert-Huang Transform
★ empirical orthogonal function
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vii
Chapter I - Introduction 1
1-1 Background 1
1-2 Problem Statement and Research Questions 5
1-3 Research Objectives 6
1-4 Research Framework 6
1-5 Research Outline 7
Chapter II - Literature Review 9
2-1 Environmental changes due to urban development 9
2-2 Definition of UHI and understanding the phenomenon 10
2-3 UHI effect on local climate 12
2-4 UHI effect on thunderstorm rainfall 14
2-4-1 Thunderstorm characteristic 14
2-4-2 UHI effect on thunderstorm rainfall in other regions 15
2-4-3 UHI effect on thunderstorm rainfall in Taipei 17
2-5 Groundwater response on climate variability 21
Chapter III - Methodology 24
3-1 Overview of the study area 24
3-1-1 Topography of the region 24
3-1-2 Climate of the study area 25
3-2 Data collection and pre-processing 26
3-3 Analysis methods 29
3-3-1 Hilbert Huang Transform (HHT) 29
3-3-2 Empirical Orthogonal Function (EOF) 33
3-3-3 Selection events for afternoon/evening thunderstorm 35
3-4 Research analysis framework 36
Chapter IV - Results and Discussion 37
4-1 UHI trend in Taipei area 37
4-2 Yearly distribution, trend, and spatial variations of thunderstorms 44
4-2-1 Thunderstorm spatial variations 47
4-2-2 Thunderstorm cumulative concentration trend 49
4-3 Groundwater trend 53
Chapter V - Conclusions 59
5-1 Findings and conclusions 59
5-2 Limitations and recommendations 60
References 62
Appendix 71
6-1 Appendix 1 71
6-2 Appendix 2 72
6-3 Appendix 3 78
6-4 Appendix 4 81
參考文獻 [1] P. D. United Nations, Department of Economic and Social Affairs, “World Urbanization Prospects. The 2018 Revision. Methodology,” Webpage, p. 22, 2018, [Online]. Available: https://population.un.org/wup/Publications/Files/WUP2018-Methodology.pdf.
[2] D. Argüeso, J. P. Evans, L. Fita, and K. J. Bormann, “Temperature response to future urbanization and climate change,” Clim. Dyn., vol. 42, no. 7–8, pp. 2183–2199, 2014, doi: 10.1007/s00382-013-1789-6.
[3] K. M. Chen, C. H. Leu, and T. M. Wang, “Measurement and Determinants of Multidimensional Poverty: Evidence from Taiwan,” Soc. Indic. Res., vol. 145, no. 2, pp. 459–478, 2019, doi: 10.1007/s11205-019-02118-8.
[4] C. Y. Lin, C. Y. Hsu, D. Gunnell, Y. Y. Chen, and S. Sen Chang, “Spatial patterning, correlates, and inequality in suicide across 432 neighborhoods in Taipei City, Taiwan,” Soc. Sci. Med., vol. 222, pp. 20–34, 2019, doi: 10.1016/j.socscimed.2018.12.011.
[5] C. Fan, C. Y. Lin, and M. C. Hu, “Empirical framework for a relative sustainability evaluation of urbanization on the water–energy–food nexus using simultaneous equation analysis,” Int. J. Environ. Res. Public Health, vol. 16, no. 6, pp. 1–18, 2019, doi: 10.3390/ijerph16060901.
[6] A. Patt, “Beyond the tragedy of the commons: Reframing effective climate change governance,” Energy Res. Soc. Sci., vol. 34, no. May, pp. 1–3, 2017, doi: 10.1016/j.erss.2017.05.023.
[7] W. Nordhaus, “Climate change: The ultimate challenge for economics,” Am. Econ. Rev., vol. 109, no. 6, pp. 1991–2014, 2019, doi: 10.1257/aer.109.6.1991.
[8] P. A. Mirzaei and F. Haghighat, “Approaches to study Urban Heat Island - Abilities and limitations,” Build. Environ., vol. 45, no. 10, pp. 2192–2201, 2010, doi: 10.1016/j.buildenv.2010.04.001.
[9] S. Arifwidodo and O. Chandrasiri, Urban Heat Island and Household Energy Consumption in Bangkok, Thailand, vol. 79. Elsevier B.V., 2015.
[10] T. Tokairin, A. Sofyan, and T. Kitada, “Numerical Study on Temperature Variation in the Jakarta Area Due To Urbanization,” Seventh Int. Conf. Urban Clim., vol. 5, no. July, pp. 3–6, 2009.
[11] IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 2000.
[12] C. D. Holmes et al., “Thunderstorms increase mercury wet deposition,” Environ. Sci. Technol., vol. 50, no. 17, pp. 9343–9350, 2016, doi: 10.1021/acs.est.6b02586.
[13] J. A. I. Paski, D. S. Permana, N. Alfuadi, M. F. Handoyo, M. H. Nurrahmat, and E. E. S. Makmur, “A Multiscale analysis of the extreme rainfall triggering flood and landslide events over bengkulu on 27th April 2019,” AIP Conf. Proc., vol. 2320, no. March, 2021, doi: 10.1063/5.0037508.
[14] R. Brázdil et al., “Fatalities associated with the weather in the Czech Republic, 2000–2019,” Nat. Hazards Earth Syst. Sci., no. 2016, pp. 1–47, 2021, doi: 10.5194/nhess-2021-14.
[15] C. S. Chanu, H. Munagapati, V. M. Tiwari, A. Kumar, and L. Elango, “Use of GRACE time-series data for estimating groundwater storage at small scale,” J. Earth Syst. Sci., vol. 129, no. 1, 2020, doi: 10.1007/s12040-020-01465-2.
[16] C. Singh, G. Jain, V. Sukhwani, and R. Shaw, “Losses and damages associated with slow-onset events: urban drought and water insecurity in Asia,” Curr. Opin. Environ. Sustain., vol. 50, pp. 72–86, 2021, doi: 10.1016/j.cosust.2021.02.006.
[17] N. Kadiyan et al., “Assessment of groundwater depletion–induced land subsidence and characterisation of damaging cracks on houses: a case study in Mohali-Chandigarh area, India,” Bull. Eng. Geol. Environ., vol. 80, no. 4, pp. 3217–3231, 2021, doi: 10.1007/s10064-021-02111-x.
[18] S. Sharma, “Effects of Urbanization on Water Resources-Facts and Figures,” Int. J. Sci. Eng. Res., vol. 8, no. 4, pp. 433–459, 2017.
[19] T. K. Yeh, C. H. Chen, C. H. Wang, and S. Wen, “Frequency anomaly of groundwater level before major earthquakes in Taiwan,” Proc. Int. Assoc. Hydrol. Sci., vol. 372, pp. 101–104, 2015, doi: 10.5194/piahs-372-101-2015.
[20] C. S. Jang, Y. M. Kuo, and S. K. Chen, “Assessment of shallow groundwater use for irrigating park trees in the metropolitan Taipei Basin according to variability conditions of water quality,” J. Hydrol. X, vol. 2, p. 100013, 2019, doi: 10.1016/j.hydroa.2018.100013.
[21] S. Chen, Y. Lin, and Y. Lee, “Characteristics of Rainfall- Groundwater Level Response in Taipei City , Taiwan,” in EGU General Assembly 2021, 2021.
[22] T. C. Chen, S. Y. Wang, and M. C. Yen, “Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei,” J. Appl. Meteorol. Climatol., vol. 46, no. 9, pp. 1324–1340, 2007, doi: 10.1175/JAM2526.1.
[23] P. Grady Dixon and T. L. Mote, “Patterns and causes of Atlanta’s urban heat island-initiated precipitation,” J. Appl. Meteorol., vol. 42, no. 9, pp. 1273–1284, 2003, doi: 10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.
[24] K. P. Naccarato, O. Pinto, and I. R. C. A. Pinto, “Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil,” Geophys. Res. Lett., vol. 30, no. 13, pp. 1–4, 2003, doi: 10.1029/2003GL017496.
[25] T. L. Mote, M. C. Lacke, and J. M. Shepherd, “Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia,” Geophys. Res. Lett., vol. 34, no. 20, pp. 2–5, 2007, doi: 10.1029/2007GL031903.
[26] J. M. Shepherd, “A review of current investigations of urban-induced rainfall and recommendations for the future,” Earth Interact., vol. 9, no. 12, 2005, doi: 10.1175/EI156.1.
[27] J. J. Baik, Y. H. Kim, and H. Y. Chun, “Dry and moist convection forced by an urban heat island,” J. Appl. Meteorol., vol. 40, no. 8, pp. 1462–1475, 2001, doi: 10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2.
[28] R. Bornstein and Q. Lin, “Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies,” Atmos. Environ., vol. 34, no. 3, pp. 507–516, 2000, doi: 10.1016/S1352-2310(99)00374-X.
[29] C. M. Rozoff, W. R. Cotton, and J. O. Adegoke, “Simulation of St. Louis, Missouri, land use impacts on thunderstorms,” J. Appl. Meteorol., vol. 42, no. 6, pp. 716–738, 2003, doi: 10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.
[30] S. A. Changnon, “the La Porte weather anomaly—fact or fiction?,” Bull. Am. Meteorol. Soc., vol. 49, no. 1, pp. 4–11, 1968, doi: 10.1175/1520-0477-49.1.4.
[31] F. A. Huff and S. A. Changnon Jr., “Climatological Assessment of Urban Effects on Precipitation at St. Louis,” J. Appl. Meteorol. Climatol., vol. 11, no. 5, pp. 823–841, 1972.
[32] H. E. Landsberg, “Man-Made Climatic Changes,” Science (80-. )., vol. 170, no. 3964, pp. 1265–1274, 1970.
[33] T. R. Peng, C. C. Huang, W. J. Zhan, and C. H. Wang, “Assessing groundwater sources and their association with reservoir water using stable hydrogen and oxygen isotopes: a case study of the Taipei Basin, northern Taiwan,” Environ. Earth Sci., vol. 75, no. 9, pp. 1–13, 2016, doi: 10.1007/s12665-016-5544-2.
[34] C. H. Wang, W. Z. Lin, T. R. Peng, and H. C. Tsai, “Temperature and hydrological variations of the urban environment in the Taipei metropolitan area, Taiwan,” Sci. Total Environ., vol. 404, no. 2–3, pp. 393–400, 2008, doi: 10.1016/j.scitotenv.2008.04.020.
[35] K. K. Zander, J. R. Cadag, J. Escarcha, and S. T. Garnett, “Perceived heat stress increases with population density in urban Philippines,” Environ. Res. Lett., vol. 13, no. 8, 2018, doi: 10.1088/1748-9326/aad2e5.
[36] B. B. Torrey, “Urbanization: An Environmental Force to Be Reckoned With,” 2004. [Online]. Available: http://www.umsl.edu/~naumannj/Geography 1001 articles/ch 10 urban geography/Urbanization An Environmental Force to Be Reckoned With.doc.
[37] J. Chen, Y. Wu, M. Song, and Y. Dong, “The residential coal consumption: Disparity in urban–rural China,” Resour. Conserv. Recycl., vol. 130, no. May 2017, pp. 60–69, 2018, doi: 10.1016/j.resconrec.2017.11.003.
[38] C. Mattick, E. Williams, and B. Allenby, “Historical trends in global energy consumption,” IEEE Technol. Soc. Mag., vol. 29, no. 3, pp. 22–30, 2010, doi: 10.1109/MTS.2010.938106.
[39] K. FULADLU, M. RİZA, and M. İLKAN, “the Effect of Rapid Urbanization on the Physical Modification of Urban Area,” pp. 1–9, 2018, doi: 10.14621/tna.
[40] V. R. Khare, A. Vajpai, and D. Gupta, “A big picture of urban heat island mitigation strategies and recommendation for India,” Urban Clim., vol. 37, p. 100845, 2021, doi: https://doi.org/10.1016/j.uclim.2021.100845.
[41] T. R. Oke, “The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980).,” Q. Journal, R. Meteorol. Soc., vol. 108, no. 455, pp. 1–24, 1982.
[42] R. Kumar, V. Mishra, J. Buzan, R. Kumar, D. Shindell, and M. Huber, “Dominant control of agriculture and irrigation on urban heat island in India,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-14213-2.
[43] Y. Li and X. Zhao, “An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption,” J. Geophys. Res. Atmos., vol. 117, no. 17, pp. 1–12, 2012, doi: 10.1029/2012JD018132.
[44] D. J. Sailor, “A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment,” Int. J. Climatol., vol. 31, no. 2, pp. 189–199, 2011, doi: 10.1002/joc.2106.
[45] F. Chen et al., “The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems,” Int. J. Climatol., vol. 31, no. 2, pp. 273–288, 2011, doi: 10.1002/joc.2158.
[46] J. Voogt, “Urban Heat Island,” in Encyclopedia of Urban Studies, R. Hutchison, Ed. Thousand Oaks: SAGE Publication, 2010, pp. 848–853.
[47] C. Ketterer and A. Matzarakis, “Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany,” Int. J. Biometeorol., vol. 59, no. 9, pp. 1299–1309, 2015, doi: 10.1007/s00484-014-0940-3.
[48] A. Mohajerani, J. Bakaric, and T. Jeffrey-Bailey, “The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete,” J. Environ. Manage., vol. 197, pp. 522–538, 2017, doi: 10.1016/j.jenvman.2017.03.095.
[49] S. Peng et al., “Surface urban heat island across 419 global big cities,” Environ. Sci. Technol., vol. 46, no. 2, pp. 696–703, 2012, doi: 10.1021/es2030438.
[50] T. Gál, N. Skarbit, and J. Unger, “Urban heat island patterns and their dynamics based on an urban climate measurement network,” Hungarian Geogr. Bull., vol. 65, no. 2, pp. 105–116, 2016, doi: 10.15201/hungeobull.65.2.2.
[51] I. Eliasson, “Urban nocturnal temperatures, street geometry and land use,” Atmos. Environ., vol. 30, no. 3, pp. 379–392, 1996, doi: 10.1016/1352-2310(95)00033-X.
[52] R. A. Memon, D. Y. C. Leung, and C. H. Liu, “An investigation of urban heat island intensity (UHII) as an indicator of urban heating,” Atmos. Res., vol. 94, no. 3, pp. 491–500, 2009, doi: 10.1016/j.atmosres.2009.07.006.
[53] W. L. Filho, L. E. Icaza, V. O. Emanche, and A. Q. Al-Amin, “An evidence-based review of impacts, strategies and tools to mitigate urban heat islands,” Int. J. Environ. Res. Public Health, vol. 14, no. 12, pp. 1–29, 2017, doi: 10.3390/ijerph14121600.
[54] S. Savić and T. Dositeja, “Intra-Urban Analysis of Air Temperature in Central-European City,” 10th Int. Conf. Urban Clim. (ICUC 10), no. 6, pp. 1–6, 2018.
[55] J. M. Shepherd, H. Pierce, and A. J. Negri, “Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite,” J. Appl. Meteorol., vol. 41, no. 7, pp. 689–701, 2002, doi: 10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.
[56] C. Y. Hsu et al., “New land use regression model to estimate atmospheric temperature and heat island intensity in Taiwan,” Theor. Appl. Climatol., vol. 141, no. 3–4, pp. 1451–1459, 2020, doi: 10.1007/s00704-020-03286-1.
[57] J. M. Huang, H. Y. Chang, and Y. S. Wang, “Spatiotemporal changes in the built environment characteristics and urban heat island effect in a medium-sized city, chiayi city, taiwan,” Sustain., vol. 12, no. 1, pp. 1–16, 2020, doi: 10.3390/su12010365.
[58] P. Lu, Y. T. Shen, and T. H. Lin, “Environmental risks or costs? Exploring flooding and the urban heat Island effect in planning for policymaking: A case study in the Southern Taiwan Science Park,” Sustain., vol. 9, no. 12, 2017, doi: 10.3390/su9122239.
[59] R. L. Hwang, C. Y. Lin, and K. T. Huang, “Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan,” Energy Build., vol. 152, pp. 804–812, 2017, doi: 10.1016/j.enbuild.2016.11.016.
[60] C. C. van Heerwaarden and J. V. G. de Arellano, “Relative humidity as an indicator for cloud formation over heterogeneous land surfaces,” J. Atmos. Sci., vol. 65, no. 10, pp. 3263–3277, 2008, doi: 10.1175/2008JAS2591.1.
[61] R. A. Houze, “Cumulonimbus and severe storms,” in International Geophysics, vol. 104, 2014, pp. 187–236.
[62] C. Shu-zhen and Z. Chao, “On The Shanghai Urban Heat Island Effect,” Acta Geogr. Sin., vol. 4, pp. 372–382, 1982, doi: 10.11821/xb198204004.
[63] L. Peng and L. Shuwen, “Analysis on Winter Thunderstorm in the North Created by the Explosive Developing Cyclones,” CNKI, 1998. http://en.cnki.com.cn/Article_en/CJFDTotal-QXXX805.010.htm (accessed May 11, 2021).
[64] X.-Z. Wang, Y.-Z. Ye, Y.-Y. Zhong, H.-Q. Jiang, and X.-J. Gao, “Distribution Characteristics of Thunderstorm Days in Cities of Jiangsu,” Sci. Aeteorologica Sin., vol. 31, no. 1, pp. 93–99, 2011.
[65] Y. Zhang, S. Miao, Y. Dai, and R. Bornstein, “Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing,” J. Geophys. Res., vol. 122, no. 15, pp. 7851–7868, 2017, doi: 10.1002/2017JD026614.
[66] S. Zheng, H. Lin-Lin, C. Huan-Bao, and T. Hong-Xia, “Study on the Change of Rainfall Characteristics in Hangzhou’s Urbanization Process,” IOP Conf. Ser. Earth Environ. Sci., vol. 267, no. 2, 2019, doi: 10.1088/1755-1315/267/2/022020.
[67] C. Sen Chen and Y. L. Chen, “The rainfall characteristics of Taiwan,” Mon. Weather Rev., vol. 131, no. 7, pp. 1323–1341, 2003, doi: 10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2.
[68] C. Y. Lin, W. C. Chen, P. L. Chang, and Y. F. Sheng, “Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan,” J. Appl. Meteorol. Climatol., vol. 50, no. 2, pp. 339–353, 2011, doi: 10.1175/2010JAMC2504.1.
[69] C. J. Ocampo, “The impact of urbanisation on water balances and nutrient pathways in areas of high groundwater: review of recent literature,” Melbourne, 2018.
[70] C. W. Liu, Y. L. Chou, S. T. Lin, G. J. Lin, and C. S. Jang, “Management of High Groundwater Level Aquifer in the Taipei Basin,” Water Resour. Manag., vol. 24, no. 13, pp. 3513–3525, 2010, doi: 10.1007/s11269-010-9617-9.
[71] J. J. de Vries and I. Simmers, “Groundwater recharge: An overview of process and challenges,” Hydrogeol. J., vol. 10, no. 1, pp. 5–17, 2002, doi: 10.1007/s10040-001-0171-7.
[72] P. T. Weiss, G. LeFevre, and J. S. Gulliver, “Contamination of Soil and Groundwater Due to Stormwater Infiltration Practices.,” Minneapolis, 2008. [Online]. Available: http://proteus.pca.state.mn.us/water/stormwater/index.html; http://purl.umn.edu/115341.
[73] Moseki, “Climate change impacts on groundwater: literature review,” Environ. Risk Assess. Remediat., vol. 2, no. 1, 2018.
[74] W. Y. Shih, S. Ahmad, Y. C. Chen, T. P. Lin, and L. Mabon, “Spatial relationship between land development pattern and intra-urban thermal variations in Taipei,” Sustain. Cities Soc., vol. 62, no. May 2019, p. 102415, 2020, doi: 10.1016/j.scs.2020.102415.
[75] L.-F. Chang, K. C.Seto, and S.-L. Huang, “Climate Change, Urban Flood Vulnerability, and Responsibility in Taipei,” Urban. Sustain. Link. Urban Ecol. Environ. Justice Glob. Environ. Chang., pp. 179–198, 2013, doi: 10.1007/978-94-007-5666-3.
[76] C. R. Chang, M. H. Li, and S. D. Chang, “A preliminary study on the local cool-island intensity of Taipei city parks,” Landsc. Urban Plan., vol. 80, no. 4, pp. 386–395, 2007, doi: 10.1016/j.landurbplan.2006.09.005.
[77] K. F. A. Lo and S. B. Koralegedara, “Effects of climate change on urban rainwater harvesting in colombo city, sri lanka,” Environ. - MDPI, vol. 2, no. 1, pp. 105–124, 2015, doi: 10.3390/environments2010105.
[78] Google Earth, “Taipei, Tanshui, and Anbu Station Area.” .
[79] N. E. Huang and Z. Wu, “a Review on Hilbert-Huang Transform : Method and Its Applications,” Rev. Geophys., vol. 46, no. 2007, pp. 1–23, 2008, doi: 10.1029/2007RG000228.1.INTRODUCTION.
[80] D. A. Addo, F. T. Oduro, and R. K. Ansah, “Empirical orthogonal function (EOF) analysis of precipitation over Ghana,” Int. J. Stat. Adv. Theory Appl. Vol., vol. 1, no. September, pp. 121–141, 2017.
[81] C. S. Chen and J. M. Huang, “A numerical study of precipitation characteristics over Taiwan island during the winter season,” Meteorol. Atmos. Phys., vol. 70, no. 3–4, pp. 167–183, 1999, doi: 10.1007/s007030050032.
[82] C. C. Wang, N. C. Su, J. P. Hou, and D. I. Lee, “Evaluation of the 2.5-km Cloud-Resolving Storm Simulator in Predicting Local Afternoon Convection during the Summer in Taiwan,” Asia-Pacific J. Atmos. Sci., vol. 54, no. 3, pp. 489–498, 2018, doi: 10.1007/s13143-018-0054-7.
[83] Y. Bai, J.-Y. Juang, and A. Kondoh, “Urban Warming and Urban Heat Islands in Taipei, Taiwan,” Groundw. Subsurf. Environ. Hum. Impacts Asian Coast. Cities, no. January 2011, pp. 231–246, 2011, doi: 10.1007/978-4-431-53904-9.
[84] M. Hsu et al., “Flood Damage Assessment in Taipei City , Taiwan,” 9th Int. Conf. Urban Drain. Model., no. January, p. 9, 2012, [Online]. Available: https://ore.exeter.ac.uk/repository/bitstream/handle/10036/4407/2012_9UDM_Flood Damage Assessment in Taipei City, Taiwan_Open Access.pdf?sequence=7.
[85] Ministry of Health and Welfare, “Land Area, and Population Density by Locality.” https://www.mohw.gov.tw/dl-6548-819e8f17-5fbc-4e3c-8dd2-cf3a025517c6.html (accessed Jul. 10, 2021).
[86] A. and S. Department of Budget, “Taipei city statistical abstarct 2018,” 2019.
[87] J. E. Miao and M. J. Yang, A modeling study of the severe afternoon thunderstorm event at taipei on 14 june 2015: The roles of Sea Breeze, microphysics, and terrain, vol. 98, no. 1. 2020.
[88] B. J.-D. Jou, “Mountain-Originated Mesoscale Precipitation System in Northern Taiwan: A Case Study 21 June 1991,” Terr. Atmos. Ocean. Sci., vol. 5, no. 2, p. 169, 1994, doi: 10.3319/tao.1994.5.2.169(tamex).
[89] T. C. Chen, M. C. Yen, J. D. Tsay, C. C. Liao, and E. S. Takle, “Impact of afternoon thunderstorms on the land-sea breeze in the Taipei basin during summer: An experiment,” J. Appl. Meteorol. Climatol., vol. 53, no. 7, pp. 1714–1738, 2014, doi: 10.1175/JAMC-D-13-098.1.
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明