博碩士論文 109322086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.135.217.85
姓名 翁采寧(Tsai-Ning Weng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以深度學習方法建立地下水位預警之風險評估模型
(Development of risk assessment model for groundwater level by wavelet-deep learning approach with smart pumping data)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 運用訊號分析方法於地下水資源旱災韌性與風險評估★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響
★ 水文地質條件不確定性下的地下水時空變化模擬★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 以系統動態與貝氏網路探討地表水與地下水的聯合管理策略
★ 探討臺灣地震活動特徵與環境變數相關性分析★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
★ 探討強風是否為崩塌致災因子與建立崩塌機器學習模型★ 以小波分析技術建立創新乾旱時空分佈指標與氣候變遷乾旱風險分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水作為人類生活及經濟發展中至關重要的存在,亦是穩定的水資源來源之一,因此面臨水資源短缺時,如何妥善利用地下水,成為一個非常重要的課題。而過往文獻大多以月份作為時間尺度,且通常以該地區過往歷史水位資料作為建模過程中的唯一輸入因子,如此可見目前對於以小尺度資料分析角度出發,且利用多項因子探討並預測地下水水位的研究仍相當缺乏。
故本研究以高雄大寮地區為例,除了降雨、潮汐、溫度及濕度的歷史小時觀測資料外,更加入過往文獻中,難以估計卻深刻地影響著地下水位變動的抽水資料。以及結合小波進行深度學習模型建立:藉由小波特徵萃取方式得到各項因子在時間域下的變動特徵,以及影響地下水位的延遲時間,進而透過遞歸神經網路(recurrent neural networks,RNN)、長短期記憶模型(long short-term memory,LSTM)及門控循環單元神經網絡 (Gate Recurrent Unit, GRU)等深度學習方法,歸納並預測出多項變動因子在不同的時間延遲下對於地下水位的影響,最後以均方根誤差(root mean square error, RMSE)、決定係數(coefficient of determination,R2)等評估係數評估模型是否可信,並在最終 LSTM 模型的結果中得到 RMSE : 0.97、MAE:0.76、MSE:0.95、R2:0.5;表示本研究能以事先瞭解並預測大寮地區可能產生的不同水位變動情形,為地下水位預測提供了一種可行而準確的方法,這將可作為智慧地下水資源管理與風險評估的一個重要參考,達到地下水資源永續利用的目標。
摘要(英) Groundwater, as a vital existence in human life and economic development, is also one of the stable sources of water resources. Therefore, how to properly utilize groundwater becomes a very important issue when faced with water shortages. However, most of the previous literature uses monthly data as the time scale, and usually uses the historical water level data of the area as the only input factor in the modeling process without considering pumping information and rainfall. This shows that the current studies of small-scale data which is based on the use of multiple factors with hydrological mechanisms to explore and predict the groundwater level is still quite lacking.
Therefore, this study proposed a novel framework combining wavelet analysis and deep learning models called wavelet-deep learning models and taking the Daliao area of Kaohsiung as an example. From the historical hourly observation data during 2017/08/23-2020/01/30, including groundwater level, smart pumping measurement, tidal, and meteorological data. After abstracting important features of each factor with groundwater level by wavelet transform, using deep learning algorithms such as recurrent neural networks (RNN), long short-term memory (LSTM) model and gate recurrent unit (GRU) to summarize and predict the impact of multiple variable factors on the groundwater level under different time lags. The results of hourly prediction show that the performance of the LSTM model, GRU model and RNN model are both reliable in which values of the root mean square error (RMSE) were obtained 0.97, 1.04 and 1.01, respectively.
This study provides a feasible and accurate approach for groundwater level prediction by understanding and predicting different water level changes that may occur in the Daliao area in advance. As a result, the study will be an important reference for groundwater resources management and risk assessment, and achieve the goal of sustainable use of groundwater resources.
關鍵字(中) ★ 地下水
★ 風險評估
★ 智慧水管理
★ 深度學習
關鍵字(英) ★ Groundwater prediction
★ Wavelet transform
★ Risk assessment
★ Deep learning
論文目次 目 錄
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論
1-1 研究背景與動機 1
1-2 研究問題與目的 5
1-3 研究流程 7
1-3 論文結構 9
第二章 文獻回顧 11
2-1 地下水資源管理之挑戰 11
2-2 降雨與地下水的交互作用 14
2-3 地下水的影響因子 15
2-4 資料科學應用於地下水資源管理 16
2-4-1 小波轉換分析 17
2-4-2 線性迴歸模型 19
2-4-3 深度學習 21
第三章 研究方法 24
3-1 研究架構 24
3-2 研究區域概述 26
3-3 資料蒐集及描述 28
3-3-1 地下水位觀測資料 28
3-3-2 影響地下水位因子資料(含時間尺度及基本統計量) 32
3-4 特徵萃取與特徵重要性評估方法 38
3-4-1 連續小波轉換分析 (Continuous Wavelet Transform) 38
3-4-2 逆小波轉換分析 (Inverse Continuous Wavelet Transform) 41
3-4-3 交叉小波變換分析 (Cross wavelet transform) 42
3-5 深度學習網路神經模型 44
3-5-1 遞歸神經網路模型(Recurrent Neural Network, RNN) 49
3-5-2 長短期記憶神經網路模型( Long Short-Term Memory ,LSTM) 50
3-5-3 門控循環單元神經網絡 (Gate Recurrent Unit, GRU) 53
第四章 結果分析 55
4-1 連續小波轉換分析分解結果 55
4-2 逆小波轉換分析分析結果 59
4-3 交叉小波驗證結果分析 62
4-4 深度神經網路推估結果 68
4-5 線性迴歸推估結果 77
第五章 討論與結論 79
5-1討論 79
5-2結論 84
5-3建議 86
5-4貢獻 87
參考文獻 88
評審意見回覆表 98
參考文獻 何春蓀. (1986). 經濟部中央地質調查所. Ho, CS (1986). The introduction of the geology in Taiwan, Central Geological Survey, MOGEA.(in Chinese).
經濟部水利署 (2017). "Guidelines for the examination of patent applicat."
Abidin, H. Z., H. Andreas, I. Gumilar, Y. Fukuda, Y. E. Pohan and T. J. N. H. Deguchi (2011). "Land subsidence of Jakarta (Indonesia) and its relation with urban development." 59(3): 1753.
Afzaal, H., A. A. Farooque, F. Abbas, B. Acharya and T. Esau (2019). "Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning." Water 12(1).
Allen, D., D. Mackie and M. J. H. J. Wei (2004). "Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada." 12(3): 270-290.
Bowes, B. D., J. M. Sadler, M. M. Morsy, M. Behl and J. L. Goodall (2019). "Forecasting Groundwater Table in a Flood Prone Coastal City with Long Short-term Memory and Recurrent Neural Networks." Water 11(5).
Burke, J. J. and M. H. Moench (2000). Groundwater and society: resources, tensions and opportunities. Themes in groundwater management for the twenty-first century, Department of International Economic and Social Affairs, Statistical Office ….
Coulibaly, P., F. Anctil, R. Aravena and B. Bobée (2001). "Artificial neural network modeling of water table depth fluctuations." Water Resources Research 37(4): 885-896.
Dagès, C., C. Paniconi and M. J. A. i. w. r. Sulis (2012). "Analysis of coupling errors in a physically-based integrated surface water–groundwater model." 49: 86-96.
Deng, L. (2014). "Deep Learning: Methods and Applications." Foundations and Trends® in Signal Processing 7(3-4): 197-387.
Ebel, B. A., B. B. Mirus, C. S. Heppner, J. E. VanderKwaak and K. J. H. P. A. I. J. Loague (2009). "First‐order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics‐based approach." 23(13): 1949-1959.
Eckhardt, K. and U. J. J. o. H. Ulbrich (2003). "Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range." 284(1-4): 244-252.
Fetter, A. L. and A. A. J. J. o. P. C. M. Svidzinsky (2001). "Vortices in a trapped dilute Bose-Einstein condensate." 13(12): R135.
Fitts, S. and L. A. J. T. E. Q. Gross (2012). "Teacher candidates learning from English learners: Constructing concepts of language and culture in Tuesday′s tutors after-school program." 39(4): 75-95.
Foster, S. and H. J. H. J. Garduño (2013). "Groundwater-resource governance: are governments and stakeholders responding to the challenge?" 21(2): 317-320.
Fried, J. J. (1975). Groundwater pollution, Elsevier.
Gao, Z., D. Long, G. Tang, C. Zeng, J. Huang and Y. Hong (2017). "Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin." Journal of Hydrology 550: 478-496.
Gleeson, T., Y. Wada, M. F. Bierkens and L. P. J. N. Van Beek (2012). "Water balance of global aquifers revealed by groundwater footprint." 488(7410): 197-200.
Gontia, N. K. and P. Y. Patil (2012). "Assessment of Groundwater Recharge Through Rainfall and Water Harvesting Structures in Jamka Microwatershed Using Remote Sensing and GIS." Journal of the Indian Society of Remote Sensing 40(4): 639-648.
Hsieh, H.-H., C.-H. Lee, C.-S. Ting and J.-W. J. E. E. S. Chen (2010). "Infiltration mechanism simulation of artificial groundwater recharge: a case study at Pingtung Plain, Taiwan." 60(7): 1353-1360.
Hsu, K.-C., C.-H. Wang, K.-C. Chen, C.-T. Chen and K.-W. J. H. J. Ma (2007). "Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan." 15(5): 903-913.
Huang, X., L. Gao, R. S. Crosbie, N. Zhang, G. Fu and R. Doble (2019). "Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning." Water 11(9).
Jyrkama, M. I. and J. F. Sykes (2007). "The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario)." Journal of Hydrology 338(3-4): 237-250.
Kaliraj, S., N. Chandrasekar and N. S. Magesh (2013). "Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique." Arabian Journal of Geosciences 7(4): 1385-1401.
Karandish, F. and J. Šimůnek (2016). "A comparison of numerical and machine-learning modeling of soil water content with limited input data." Journal of Hydrology 543: 892-909.
Kløve, B., P. Ala-Aho, G. Bertrand, Z. Boukalova, A. Ertürk, N. Goldscheider, J. Ilmonen, N. Karakaya, H. Kupfersberger, J. J. E. S. Kvœrner and Policy (2011). "Groundwater dependent ecosystems. Part I: Hydroecological status and trends." 14(7): 770-781.
Kummerow, C., J. Simpson, O. Thiele, W. Barnes, A. Chang, E. Stocker, R. Adler, A. Hou, R. Kakar and F. J. J. o. a. m. Wentz (2000). "The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit." 39(12): 1965-1982.
Ledoux, E., G. Girard, G. De Marsily, J. Villeneuve and J. Deschenes (1989). Spatially distributed modeling: conceptual approach, coupling surface water and groundwater. Unsaturated Flow in Hydrologic Modeling, Springer: 435-454.
Lee, P. K., T. W. Macbeth, K. S. Sorenson Jr, R. A. Deeb, L. J. A. Alvarez-Cohen and E. Microbiology (2008). "Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site." 74(9): 2728-2739.
Li, H., M. C. Boufadel and J. W. Weaver (2008). "Tide-induced seawater–groundwater circulation in shallow beach aquifers." Journal of Hydrology 352(1-2): 211-224.
Machiwal, D. and M. K. J. H. P. Jha (2014). "Characterizing rainfall–groundwater dynamics in a hard‐rock aquifer system using time series, geographic information system and geostatistical modelling." 28(5): 2824-2843.
Moench, C., K. Moench, A. W. Lohse, J. Thies and G. J. L. T. Otto (2003). "Prevention of ischemic-type biliary lesions by arterial back-table pressure perfusion." 9(3): 285-289.
Mogaji, K. A., H. S. Lim and K. Abdullah (2014). "Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management." Environmental Earth Sciences 73(3): 1217-1230.
Mohanty, S., M. K. Jha, A. Kumar and D. K. Panda (2013). "Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India." Journal of Hydrology 495: 38-51.
Oh, Y.-Y., S.-T. Yun, S. Yu and S.-Y. Hamm (2017). "The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer." Journal of Hydrology 555: 938-955.
Oki, T. and S. Kanae (2006). "Global Hydrological Cycles and World Water Resources." 313(5790): 1068-1072.
Owor, M., R. Taylor, C. Tindimugaya and D. J. E. R. L. Mwesigwa (2009). "Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin." 4(3): 035009.
Panda, D. K., A. Mishra, S. K. Jena, B. K. James and A. Kumar (2007). "The influence of drought and anthropogenic effects on groundwater levels in Orissa, India." Journal of Hydrology 343(3-4): 140-153.
Pimentel, D., B. Berger, D. Filiberto, M. Newton, B. Wolfe, E. Karabinakis, S. Clark, E. Poon, E. Abbett and S. Nandagopal (2004). "Water Resources: Agricultural and Environmental Issues." BioScience 54(10): 909-918.
Rajaee, T., H. Ebrahimi and V. Nourani (2019). "A review of the artificial intelligence methods in groundwater level modeling." Journal of Hydrology 572: 336-351.
Rennolls, K., R. Carnell and V. J. J. o. H. Tee (1980). "A descriptive model of the relationship between rainfall and soil water table." 47(1-2): 103-114.
Rodell, M., I. Velicogna and J. S. J. N. Famiglietti (2009). "Satellite-based estimates of groundwater depletion in India." 460(7258): 999-1002.
Siebert, S., J. Burke, J.-M. Faures, K. Frenken, J. Hoogeveen, P. Döll, F. T. J. H. Portmann and e. s. sciences (2010). "Groundwater use for irrigation–a global inventory." 14(10): 1863-1880.
Taylor, R. G., M. C. Todd, L. Kongola, L. Maurice, E. Nahozya, H. Sanga and A. M. J. N. C. C. MacDonald (2013). "Evidence of the dependence of groundwater resources on extreme rainfall in East Africa." 3(4): 374-378.
Van Gaalen, J., S. Kruse, W. Lafrenz and S. J. G. Burroughs (2013). "Predicting water table response to rainfall events, central Florida." 51(3): 350-362.
Wada, Y., L. P. Van Beek, C. M. Van Kempen, J. W. Reckman, S. Vasak and M. F. J. G. r. l. Bierkens (2010). "Global depletion of groundwater resources." 37(20).
Wittenberg, H. and M. J. J. o. h. Sivapalan (1999). "Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation." 219(1-2): 20-33.
Wollschläger, U., J. Ilmberger, M. Isenbeck-Schröter, A. M. Kreuzer, C. von Rohden, K. Roth and W. J. A. s. Schäfer (2007). "Coupling of groundwater and surface water at Lake Willersinnweiher: Groundwater modeling and tracer studies." 69(1): 138-152.
Yu, H.-L. and H.-J. J. J. o. H. Chu (2010). "Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan." 381(3-4): 239-247.
Yu, H.-L. and Y.-C. Lin (2015). "Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods." Journal of Hydrology 525: 585-597.
Yu, X., T. Cui, J. Sreekanth, S. Mangeon, R. Doble, P. Xin, D. Rassam and M. Gilfedder (2020). "Deep learning emulators for groundwater contaminant transport modelling." Journal of Hydrology 590.
Zhang, J., Y. Zhu, X. Zhang, M. Ye and J. Yang (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas." Journal of Hydrology 561: 918-929.
Fetter, A. L., & Svidzinsky, A. A. (2001). Vortices in a trapped dilute Bose-Einstein condensate. Journal of Physics: Condensed Matter, 13(12), R135.

Fitts, S., & Gross, L. A. (2012). Teacher candidates learning from English learners: Constructing concepts of language and culture in Tuesday′s tutors after-school program. Teacher Education Quarterly, 39(4), 75-95.

Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., ... & Widerlund, A. (2011). Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14(7), 770-781.

Moench, C., Moench, K., Lohse, A. W., Thies, J., & Otto, G. (2003). Prevention of ischemic-type biliary lesions by arterial back-table pressure perfusion. Liver Transplantation, 9(3), 285-289.

Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200.

Burke, J. J., & Moench, M. H. (2000). Groundwater and society: resources, tensions and opportunities. Themes in groundwater management for the twenty-first century. Department of International Economic and Social Affairs, Statistical Office, United Nations.

Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., ... & Nakamura, K. (2000). The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of applied meteorology, 39(12), 1965-1982.

Feitelson, E. (2005). Political economy of groundwater exploitation: the Israeli case. International Journal of Water Resources Development, 21(3), 413-423.


Foster, S., & Garduño, H. (2013). Groundwater-resource governance: are governments and stakeholders responding to the challenge?. Hydrogeology Journal, 21(2), 317-320.

Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20).

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation–a global inventory. Hydrology and earth system sciences, 14(10), 1863-1880.

Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999-1002.

Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753.

Fried, J. J. (1975). Groundwater pollution. Elsevier.

Eckhardt, K., & Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284(1-4), 244-252.

Allen, D. M., Mackie, D. C., & Wei, M. J. H. J. (2004). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology Journal, 12(3), 270-290.

Hsu, K. C., Wang, C. H., Chen, K. C., Chen, C. T., & Ma, K. W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913.

Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., & MacDonald, A. M. (2013). Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3(4), 374-378.

Owor, M., Taylor, R. G., Tindimugaya, C., & Mwesigwa, D. (2009). Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environmental Research Letters, 4(3), 035009.

Yu, H. L., & Chu, H. J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381(3-4), 239-247.

Dagès, C., Paniconi, C., & Sulis, M. (2012). Analysis of coupling errors in a physically-based integrated surface water–groundwater model. Advances in water resources, 49, 86-96.

Ebel, B. A., Mirus, B. B., Heppner, C. S., VanderKwaak, J. E., & Loague, K. (2009). First‐order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics‐based approach. Hydrological Processes: An International Journal, 23(13), 1949-1959.

Ledoux, E., Girard, G., De Marsily, G., Villeneuve, J. P., & Deschenes, J. (1989). Spatially distributed modeling: conceptual approach, coupling surface water and groundwater. In Unsaturated Flow in Hydrologic Modeling (pp. 435-454). Springer, Dordrecht.

Wollschläger, U., Ilmberger, J., Isenbeck-Schröter, M., Kreuzer, A. M., von Rohden, C., Roth, K., & Schäfer, W. (2007). Coupling of groundwater and surface water at Lake Willersinnweiher: Groundwater modeling and tracer studies. Aquatic sciences, 69(1), 138-152.

Hsieh, H. H., Lee, C. H., Ting, C. S., & Chen, J. W. (2010). Infiltration mechanism simulation of artificial groundwater recharge: a case study at Pingtung Plain, Taiwan. Environmental Earth Sciences, 60(7), 1353-1360.

Lee, P. K., Macbeth, T. W., Sorenson Jr, K. S., Deeb, R. A., & Alvarez-Cohen, L. (2008). Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Applied and Environmental Microbiology, 74(9), 2728-2739.

Wittenberg, H., & Sivapalan, M. (1999). Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of hydrology, 219(1-2), 20-33.

Machiwal, D., & Jha, M. K. (2014). Characterizing rainfall–groundwater dynamics in a hard‐rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrological Processes, 28(5), 2824-2843.

Owor, M., Taylor, R. G., Tindimugaya, C., & Mwesigwa, D. (2009). Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environmental Research Letters, 4(3), 035009.

Rennolls, K., Carnell, R., & Tee, V. (1980). A descriptive model of the relationship between rainfall and soil water table. Journal of Hydrology, 47(1-2), 103-114.

Van Gaalen, J. F., Kruse, S., Lafrenz, W. B., & Burroughs, S. M. (2013). Predicting water table response to rainfall events, central Florida. Groundwater, 51(3), 350-362.

Wu, J., Zhang, R., & Yang, J. (1996). Analysis of rainfall-recharge relationships. Journal of Hydrology, 177(1-2), 143-160.

Loáiciga, H. A., Maidment, D. R., & Valdes, J. B. (2000). Climate-change impacts in a regional karst aquifer, Texas, USA. Journal of Hydrology, 227(1-4), 173-194.

Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. science, 296(5575), 1985-1990.

Chen, X., & Hu, Q. (2004). Groundwater influences on soil moisture and surface evaporation. Journal of Hydrology, 297(1-4), 285-300.

Rutherford, S. (2004). Groundwater use in Canada. West Coast Environmental Law.

El Moujabber, M., Atallah, T., Darwish, T., & Bou Samra, B. (2004). Monitoring of groundwater salination by seawater intrusion on the Lebanese Coast. Lebanese Science Journal, 5(2), 21-36.

Rejani, R., Jha, M. K., Panda, S. N., & Mull, R. (2008). Simulation modeling for efficient groundwater management in Balasore coastal basin, India. Water Resources Management, 22(1), 23-50.

Bokuniewicz, H. (1980). Groundwater seepage into Great South Bay, New York. Estuarine and Coastal Marine Science, 10(4), 437-444.

Cable, J. E., Burnett, W. C., & Chanton, J. P. (1997). Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry, 38(2), 189-205.

Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 16(11), 2115-2129.

Slomp, C. P., & Van Cappellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1-4), 64-86.

Taniguchi, M., Ishitobi, T., & Shimada, J. (2006). Dynamics of submarine groundwater discharge and freshwater‐seawater interface. Journal of Geophysical Research: Oceans, 111(C1).

Nakhaei, M., & Nasr, A. S. (2012). A combined Wavelet-Artificial Neural Network model and its application to the prediction of groundwater level fluctuations. Geopersia, 2(2), 77-91.

Nourani, V., & Andalib, G. (2015). Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science, 12(1), 85-100.

Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358-377.

Nourani, V., & Mousavi, S. (2016). Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology, 536, 10-25.

Suryanarayana, C., Sudheer, C., Mahammood, V., & Panigrahi, B. K. (2014). An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324-335.

Chen, Y., Liu, G., Huang, X., Chen, K., Hou, J., & Zhou, J. (2021). Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis. Journal of Hydrology, 598, 125726.

Ao, C., Zeng, W., Wu, L., Qian, L., Srivastava, A. K., & Gaiser, T. (2021). Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China. Agricultural Water Management, 255, 107032.

Partal, T., & Cigizoglu, H. K. (2009). Prediction of daily precipitation using wavelet—neural networks. Hydrological sciences journal, 54(2), 234-246.

Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40.
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2021-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明