博碩士論文 108322103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.161.235
姓名 周奕伶(Yi-Ling Chou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 自駕車通過號誌化路口之速率控制
(Speed control of autonomous vehicle passing through the signalized intersections)
相關論文
★ 紅燈右轉人車衝突風險分析★ 機車騎士紅燈怠速熄火意願及其預期成效之研究
★ 雪山隧道路徑導引策略研究★ 利用回饋式類神經插補探討路段車輛偵測器佈設間距
★ 利用基因規劃法進行車輛偵測器資料填補★ 機車紅燈怠速熄火節能減碳效果評估
★ 應用存活分析法於運具移轉行為之研究★ 利用基因規劃法預測高速公路旅行時間
★ 以鏈結串列搜尋車輛偵測器遺漏值最佳填補方式★ 應用存活分析法於鋪面坑洞影響因素及使用年限之研究
★ 機車隨機到達情況下紅燈怠速熄火效果之研究★ 雪山隧道行車速率特性分析
★ 應用存活分析法於公路長隧道事故分析之研究★ 需求反應式運輸系統營運模式與績效評估-以復興鄉為例
★ 應用存活分析於市區公車駕駛行為異常之研究★ 市區公車油耗與節能減碳之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這個互聯的時代,互聯的車輛或交通管理系統從其他車輛的感測器或周遭環境、固定基礎設施等去接收訊息,再做出相應的動作,而自駕車與智慧交通號誌的資訊傳遞上,當前為根據車輛系統偵測前方燈號,使駕駛能預判採放油門力道,並根據攝影機和感測器再做出續進或減速行為。現今通訊技術上傳遞範圍已經能夠於更遠的位置就可以接收到號誌資訊,即可以提早知道週期時間,判斷依目前速率是否可以通過路口,依此直接控制系統調整自駕車行駛速率,進而達到改善道路交通流量。
本研究以聯網自駕車於路口一段距離前,可以提早接收號誌資訊並依其調整行駛速率,使其最大程度通過路口而不停駛,建立速率模式及控制策略,界定速率與加速度減速度範圍,針對不同接收位置及紅燈秒數進行各項分析,並且以不同紅燈情況之情境下進行控制結果,以控制自駕車通過號誌化路口,減少因為紅燈造成的停駛時間,並且能夠增加路口通過機率。
摘要(英) The present society is the era of Internet, connected vehicles or traffic management systems receive information from the sensors of other vehicles or the surrounding environment, fixed infrastructure, etc., and then take corresponding actions. In the information transmission of autonomous vehicles and intelligent traffic signals, the current technology is to detect the front light signal according to the vehicle system, so that the driver can predetermine the force of the accelerator, and then progression or deceleration behavior according to the camera and sensor .
Nowadays, the transmission range of communication technology is able to receive the signal information at a farther position, and the cycle time can be known in advance, and it can be judged whether the intersection can be passed at the current rate, and the system can directly control the system to adjust the speed of the autonomous vehicle to improve road traffic flow.
In this study, a connected autonomous vehicle can receive signal information in advance and adjust the driving speed according to it to make it pass the intersection to the maximum extent without stopping, establish a speed model and control strategy, and define the speed and acceleration/deceleration range. Perform various analyses for different receiving positions and red light seconds, and control the results under different red light situations to control the autonomous vehicle to pass signalized intersections, reduce the stop time caused by red lights, and can Increase the probability of passing the intersection.
關鍵字(中) ★ 自動駕駛汽車
★ 車聯網
★ 速率控制
★ 交通號誌資訊
★ 紅燈秒數
★ Red light seconds
關鍵字(英) ★ Autonomous vehicle
★ Vehicle-to-everything
★ Speed control
★ Traffic signal information
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 2
1.3 研究方法與流程 4
第二章 文獻回顧 5
2.1 自動駕駛汽車 5
2.2 車聯網環境與號誌化路口 7
2.3 速率控制 10
2.4 車輛行駛加減速度 13
2.5 文獻評析 15
第三章 車輛速率控制方法 16
3.1 速率控制架構 16
3.1.1 模式基本假設與條件設定 19
3.2 到達路口號誌預測模式 20
3.3 車輛行駛速率模式 24
3.3.1車輛減速停駛 24
3.3.2 預計車輛到達路口為紅燈剛開始 25
3.3.3 預計車輛到達路口為紅燈快結束 29
3.4 小結 33
第四章 基本狀況設定與分析 34
4.1 速率與加減速度範圍 34
4.1.1 紅燈前段速率與加速度範圍 34
4.1.2 紅燈尾段速率與減速度範圍 37
4.2 調整設定與分析 39
4.2.1 不同接收位置之速率變化 40
4.2.2 不同紅燈秒數之速率變化 44
4.2.3 不同接收位置與紅燈秒數之加減速位置與速率 48
4.3 通過路口機率 69
4.4 小結 70
第五章 控制策略 71
5.1 控制策略設置 71
5.2 控制情境與分析 73
5.2.1 情境設定 73
5.2.2 結果與分析 73
5.3 小結 78
第六章 結論與建議 79
6.1 結論 79
6.2 建議 81
參考文獻 82
附錄 87
附錄一 最小加速度查表 87
附錄二 最小減速度查表 96
參考文獻 1.財團法人車輛研究測試中心,自駕車專區。檢自https://www.artc.org.tw/chinese/04_industry/01_01detail.aspx?pdid=22
2.Luo, C., Li, D., Ding, X., & Wu, W. (2020). Delivery Route Optimization with automated vehicle in smart urban environment. Theoretical Computer Science, 836, 42-52.
3.Gora, P., Katrakazas, C., Drabicki, A., Islam, F., & Ostaszewski, P. (2020). Microscopic traffic simulation models for connected and automated vehicles (CAVs)–state-of-the-art. Procedia Computer Science, 170, 474-481.
4.Lian, Y., Zhang, G., Lee, J., & Huang, H. (2020). Review on big data applications in safety research of intelligent transportation systems and connected/automated vehicles. Accident Analysis & Prevention, 146, 105711.
5.Barthauer, M., & Friedrich, B. (2019). Presorting and presignaling: A new intersection operation mode for autonomous and human-operated vehicles. Transportation research procedia, 37, 179-186.
6.Zhu, H. B., Zhou, Y. J., & Wu, W. J. (2020). Modeling traffic flow mixed with automated vehicles considering drivers’ character difference. Physica A: Statistical Mechanics and its Applications, 549, 124337.
7.Bhargava, K., Choy, K. W., Jennings, P. A., Birrell, S. A., & Higgins, M. D. (2020). Traffic Simulation of Connected and Autonomous Freight Vehicles (CAV-F) using a data-driven traffic model of a real-world road tunnel. Transportation Engineering, 2, 100011.
8.Jin, I. G., Avedisov, S. S., He, C. R., Qin, W. B., Sadeghpour, M., & Orosz, G. (2018). Experimental validation of connected automated vehicle design among human-driven vehicles. Transportation research part C: emerging technologies, 91, 335-352.
9.Chen, H., Rakha, H. A., Loulizi, A., El-Shawarby, I., & Almannaa, M. H. (2016). Development and preliminary field testing of an in-vehicle eco-speed control system in the vicinity of signalized intersections. IFAC-PapersOnLine, 49(3), 249-254.
10.Tang, T. Q., Yi, Z. Y., Zhang, J., Wang, T., & Leng, J. Q. (2018). A speed guidance strategy for multiple signalized intersections based on car-following model. Physica A: Statistical Mechanics and its Applications, 496, 399-409.
11.Stebbins, S., Hickman, M., Kim, J., & Vu, H. L. (2017). Characterising green light optimal speed advisory trajectories for platoon-based optimisation. Transportation Research Part C: Emerging Technologies, 82, 43-62.
12.Nguyen, V., Kim, O. T. T., Dang, T. N., Moon, S. I., & Hong, C. S. (2016, October). An efficient and reliable green light optimal speed advisory system for autonomous cars. In 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1-4). IEEE.
13.Zhu, W. X., & Zhang, L. D. (2014). A speed feedback control strategy for car-following model. Physica A: Statistical Mechanics and its Applications, 413, 343-351.
14.郭景華, 李克強, & 羅禹貢. (2016). 智慧車輛運動控制研究綜述. 汽車安全與節能學報, 7(02), 151.
15.Katsaros, K., Kernchen, R., Dianati, M., & Rieck, D. (2011, July). Performance study of a Green Light Optimized Speed Advisory (GLOSA) application using an integrated cooperative ITS simulation platform. In 2011 7th International Wireless Communications and Mobile Computing Conference (pp. 918-923). IEEE.
16.Colombaroni, C., Fusco, G., & Isaenko, N. (2020). A simulation-optimization method for signal synchronization with bus priority and driver speed advisory to connected vehicles. Transportation research procedia, 45, 890-897.
17.張博, 郭戈, 王麗媛, & 王瓊. (2018). 基於信號燈狀態的燃油最優車速規劃與控制. 自動化學報, 44(3), 461-470.
18.Tak, S., Kim, S., & Yeo, H. (2016). A study on the traffic predictive cruise control strategy with downstream traffic information. IEEE Transactions on Intelligent Transportation Systems, 17(7), 1932-1943.
19.Mahler, G., & Vahidi, A. (2014). An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of traffic-signal timing. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2516-2523.
20.Liang, X. J., Guler, S. I., & Gayah, V. V. (2020). An equitable traffic signal control scheme at isolated signalized intersections using Connected Vehicle technology. Transportation Research Part C: Emerging Technologies, 110, 81-97.
21.Xie, X. F., & Wang, Z. J. (2018). SIV-DSS: Smart in-vehicle decision support system for driving at signalized intersections with V2I communication. Transportation Research Part C: Emerging Technologies, 90, 181-197.
22.Zhao, X., Wu, X., Xin, Q., Sun, K., & Yu, S. (2020). Dynamic Eco-Driving on Signalized Arterial Corridors during the Green Phase for the Connected Vehicles. Journal of Advanced Transportation, 2020.
23.Sun, C., Guanetti, J., Borrelli, F., & Moura, S. J. (2020). Optimal eco-driving control of connected and autonomous vehicles through signalized intersections. IEEE Internet of Things Journal, 7(5), 3759-3773.
24.Ubiergo, G. A., & Jin, W. L. (2016). Mobility and environment improvement of signalized networks through Vehicle-to-Infrastructure (V2I) communications. Transportation Research Part C: Emerging Technologies, 68, 70-82.
25.Ci, Y., Wu, L., Zhao, J., Sun, Y., & Zhang, G. (2019). V2I-based car-following modeling and simulation of signalized intersection. Physica A: Statistical Mechanics and Its Applications, 525, 672-679.
26.Zha, L., Zhang, Y., Songchitruksa, P., & Middleton, D. R. (2015). An integrated dilemma zone protection system using connected vehicle technology. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1714-1723.
27.Priemer, C., & Friedrich, B. (2009, October). A decentralized adaptive traffic signal control using V2I communication data. In 2009 12th International IEEE Conference on Intelligent Transportation Systems (pp. 1-6). IEEE.
28.Han, E., Lee, H. P., Park, S., So, J. J., & Yun, I. (2019). Optimal signal control algorithm for signalized intersections under a V2I communication environment. Journal of Advanced Transportation, 2019.
29.Guo, Q., Li, L., & Ban, X. J. (2019). Urban traffic signal control with connected and automated vehicles: A survey. Transportation research part C: emerging technologies, 101, 313-334.
30.Chandan, K., Seco, A. M., & Silva, A. B. (2017). Real-time traffic signal control for isolated intersection, using car-following logic under connected vehicle environment. Transportation research procedia, 25, 1610-1625.
31.Liang, X. J., Guler, S. I., & Gayah, V. V. (2020). A heuristic method to optimize generic signal phasing and timing plans at signalized intersections using Connected Vehicle technology. Transportation Research Part C: Emerging Technologies, 111, 156-170.
32.Matsumoto, Y., & Nishio, K. (2019). Reinforcement learning of driver receiving traffic signal information for passing through signalized intersection at arterial road. Transportation research procedia, 37, 449-456.
33.Asadi, B., & Vahidi, A. (2010). Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time. IEEE transactions on control systems technology, 19(3), 707-714.
34.Bosetti, P., Da Lio, M., & Saroldi, A. (2014). On the human control of vehicles: an experimental study of acceleration. European Transport Research Review, 6(2), 157-170.
35.Svensson, L., & Eriksson, J. (2015). Tuning for ride quality in autonomous vehicle: Application to linear quadratic path planning algorithm.
36.Moon, S., & Yi, K. (2008). Human driving data-based design of a vehicle adaptive cruise control algorithm. Vehicle System Dynamics, 46(8), 661-690.
37.Bae, I., Moon, J., & Seo, J. (2019). Toward a comfortable driving experience for a self-driving shuttle bus. Electronics, 8(9), 943.
38.Roess, R. P., Prassas, E. S., & McShane, W. R. (2011). Traffic Engineering–Fourth Edition. Pearson Prentice Hall.
39.朱致遠、邱裕鈞、陳惠國 (2017) 。交通工程。五南。
40.臺北市路口號誌時制計畫 (2020年12月31日)。檢自https://data.gov.tw/。
指導教授 吳健生 審核日期 2021-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明