博碩士論文 108322010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.225.195.163
姓名 常珮慈(Pei-Tzu Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計
★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證
★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計
★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
★ 雙向天鉤主動隔震系統之數值模擬分析及實驗驗證★ 天鉤主動隔震系統應用強化學習DDPG與直接輸出回饋之最佳化設計與分析
★ 相位控制多元主動調諧質量阻尼器於結構減震性能評估之數值模擬分析★ 倒擺懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之分析與實驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對相位控制之主動式調諧質量尼器(Phase Control – Active Tuned Mass Damper, PC-ATMD)應用於多自由度結構進行驗證。其中相位控制律,由結構回饋之量測值分為「結構位移回饋之相位控制」與「結構絕對加速度回饋之相位控制」,而發展結構位移回饋之相位控制主動調諧質量阻尼器(Phase Control Displacement feedback – Active Tuned Mass Damper, PCD-ATMD)與結構絕對加速度回饋之相位控制主動調諧質量阻尼器(Phase Control abs. Acceleration feedback – Active Tuned Mass Damper, PCA-ATMD),接著以多自由度結構加裝PC-ATMD案例情況,進行各項數值模擬分析,探討各情況之減振效果及特性,並以多自由度構架試體振動台實驗進行驗證。相位控制之主動調諧質量阻尼器,是於調諧質量阻尼器與結構間施加控制力,並可即時調整調諧質量阻尼器之運動,使調諧質量阻尼器與結構保持-90度相位差,調諧質量阻尼器也擁有最大能量流(Power Flow),因此有最佳之減振效果。多自由度結構加裝PC-ATMD之分析與實驗結果表明,從結構頻率反應函數與地震力作用下之結構歷時反應,皆有良好之減振效果,而其量測數量少,不需全狀態回饋且效果與線性二次控制器(Linear Quadratic Regulator, LQR)有相當之減振效果。另外由敏感度分析中,PCD-ATMD和PCA-ATMD之設計增益參數變化對結構之減振效果影響較不明顯;而在系統穩定度分析說明,在一定範圍內兩者皆為穩定可控制之系統,顯示兩者之控制方法皆有強健性。
摘要(英) The purpose of this research is to verify the application of the phase control tuned mass dampers (PC-ATMDs) implemented on multiple degrees of freedom structure. The essential of the PC-ATMD is to apply control force between the tuning mass and the structure, so that the PC-ATMD can achieve a 90-degree phase lag of structure to induce maximum power flow resulting in outstanding vibration reduction capability. Base on the difference of measurement signal feedback from the structure, the displacement feedback or the absolute acceleration feedback, the PC-ATMD can be further distinguished as Phase Control Displacement feedback-Active Tuned Mass Damper (PCD-ATMD) and Phase Control absolute Acceleration feedback-Active Tuned Mass Damper (PCA-ATMD). The numerical simulation results show that the PCD-ATMD and PCA-ATMD has excellent performance on structural vibration reduction in both frequency domain and time domain analysis, and then the shaking table experiment is conducted by using a 3-stories shear building frame incorporated with the PCD-ATMD or PCA-ATMD to verify the performance regarding the structural vibration reduction. Moreover, the PC-ATMD is comparable with conventional linear-quadratic-regulator (LQR) controlled ATMD but full state feedback measurement of the entire system or system observer is not required. The sensitivity and stability analysis also shows that the variation of gain parameters of PCD-ATMD or PCA-ATMD in a certain range is durable and stable. Hence, both of the active phase control algorithms are robust.
關鍵字(中) ★ 調諧質量阻尼器
★ 主動控制
★ 相位控制
★ 多自由度結構
★ 能量流理論
★ 振動台實驗
★ 離散時間系統
★ 即時控制
關鍵字(英) ★ tuned mass damper
★ active control
★ phase control
★ multiple degrees of freedom structure
★ power flow theory
★ shaking table experiment
★ real time control
論文目次 摘要 I
ABSTRACT III
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究內容 4
第二章 相位控制調諧質量阻尼器 5
2.1 相位控制之概念與原理 5
2.2 多自由度結構加裝ATMD之動力系統 6
2.3 多自由度結構位移回饋之相位控制推導 9
2.4 相位控制參數最佳化 11
2.5 多自由度結構絕對加速度回饋之相位控制推導 12
2.6 相位控制方法之流程 13
第三章 多自由度構架加裝調諧質量阻尼器之分析 19
3.1 頻率反應函數 19
3.1.1 多自由度構架加裝ATMD之動力系統 19
3.1.2 多自由度構架加裝PCD-ATMD與PCA-ATMD之頻率反應函數 21
3.1.3 多自由度結構位移頻率反應函數 22
3.1.4 多自由度結構絕對加速度頻率反應函數 23
3.1.5 質量塊衝程頻率反應函數 24
3.1.6 主動控制力頻率反應函數 24
3.2 地震歷時分析 25
3.2.1 輸入之地震歷時 25
3.2.2 地震歷時下之構架反應 26
3.3 系統穩定性分析 31
3.3.1 相位控制結構位移回饋系統穩定性分析 31
3.3.2 相位控制結構絕對加速度回饋系統穩定性分析 32
3.4 敏感度分析之相位控制結構位移回饋系統 33
3.4.1 增益係數之敏感度分析 33
3.4.2 振幅比之敏感度分析 34
3.4.3 ATMD頻率之敏感度分析 36
3.4.4 ATMD阻尼比之敏感度分析 36
3.4.5 多自由度結構頻率之敏感度分析 37
3.4.6 多自由度結構阻尼比之敏感度分析 38
3.5 敏感度分析之相位控制結構絕對加速度回饋系統 39
3.5.1 增益係數之敏感度分析 39
3.5.2 振幅比之敏感度分析 40
3.5.3 ATMD頻率之敏感度分析 41
3.5.4 ATMD阻尼比之敏感度分析 42
3.5.5 多自由度結構頻率之敏感度分析 43
3.5.6 多自由度結構阻尼比之敏感度分析 44
第四章 實驗設備與配備 99
4.1 實驗設備與配置 99
4.1.1 多自由度構架配置 99
4.1.2 ATMD 99
4.1.3 控制介面與量測儀器 100
4.1.4 轉速控制 101
4.2 實驗構架系統識別 102
4.3 結構之層間變位檢核 103
4.4 ATMD參數設計 104
4.5 數位濾波器 105
4.6 輸入之地震歷時 106
第五章 實驗結果與討論 117
5.1 實驗中各ATMD案例之減震效果比較 117
5.2 相同震波下PGA值變化之影響 120
5.3 不同震波下之減震效果差異 122
5.4 實驗結果與分析結果之比較 122
第六章 結論與建議 181
6.1 結論 181
6.2 建議 184
參考文獻 185
附錄A 191
參考文獻 1 內政部營建署(2011)。建築物耐震設計規範與解說(中華民國100年1月19日台內營字第0990810250號)。
2 羅偉宸(2020)。主動式相位控制調諧質量阻尼器之研發與實驗驗證。國立中央大學土木工程學系研究所碩士論文。
3 Den Hartog J.P.(1956). Mechanical Vibrations(4th ed.). New York: McGraw-Hill.
4 Warburton G.B. and Ayorinde E.O.(1980). Optimum absorber paraments for simple systems. Earthquake Engineering and structural Dynamics, 8(3), pp.197-217.
5 Ayorinde E.O. and Warburton G.B.(1980). Minimizing structural vibrations with absorbers. Earthquake Engineering and structural Dynamics, 8(3), pp.219-236.
6 Warburton G.B.(1982). Optimum absorber paraments for various combinations of response and excitation parameters, Earthquake Engineering and structural Dynamics, 10(3), pp.381-401.
7 Sadek F., Mohraz B., Taylor A.W. and Chung R.M.(1997). A Method of Estimating the Parameters of Mass Dampers for Seismic Application, Earthquake Engineering and structural Dynamics, 26(6), pp.617-635.
8 Bakre S.V. and Jangid R.S.(2006). Optimum parameters of tuned mass damper for damped main system, Structure Control and Health Monitoring, 14 (3), pp.448-470.
9 鍾立來、顧丁與、賴勇安、吳賴雲(2012)。調諧質塊阻尼器於基底震動之最佳減震設計參數。結構工程,第二十七卷,第四期,頁70-90。
10 王哲夫(1996)。被動調諧質量阻尼器之最佳設計暨應用。國立中興大學土木工程學系研究所。
11 Lee C.L., Chen Y.T., Chung L.L. and Wamg Y.P.(2006). Optimal design theories and applications of tuned mass dampers, Engineering Structures, 28(1), pp.43-53.
12 Ghosh A. and Basu B.(2005). A closed-form optimal tuning criterion for TMD in damped structures, Structural, Control and Health Monitoring, 14(4), pp.681-692.
13 Chang C.C.(1999). Mass dampers and their optimal designs for building vibration control, Engineering Structures, 21(5), pp.454-463.
14 Fujino Y. and Abe M.(1993), Design formulas for tuned mass dampers based on a perturbation technique, Earthquake Engineering and Structural Dynamics, 22(10), pp.833-854.
15 Chang C.M., Shia S. and Lai Y.A.(2018). Seismic Design of Passive Tuned Mass Damper Parameters Using Active Control Algorithm, Journal of Sound and Vibration, 426, pp.150-165.
16 Hadi N.S. and Aifiadi Y.(1998). Optimum design of absorber for MDOF structures, Journal of Structural Engineering, 124, pp.1272-1280.
17 Soong T.T. and Manolis G.D.(1987). Active structures, Journal of Structural Engineering, 113(11), pp.2290-2301.
18 Chung L.L., Reinhorn A.M. and Soong T.T.(1988).Experiments on active control of seismic structures, Journal of Engineering Machanics, 114(2), pp.241-256.
19 Reinhorn A.M., Soong T.T., Lin R.C., Riley M.A., Wang Y.P., Aizawa S. and Higashino M.(1992). Active Bracing System: A Full Scale Implementation of Active Control, Technical Report NCEER-92-0020.
20 Spencer B.F. Jr., Suhardjo J. and Sain M.K.(1994). Frequency domain optimal control strategies for aseismic protection, Journal of Engineering Mechanics, 120, pp.135-158.
21 Chang J.C.H. and Soong T.T.(1980). Structure control using control using active tuned mass dampers, Journal of Engineering Mechanics, 106, pp.1091-1098.
22 Chung L. L., Lin R. C., Soong T, T., and Reinhorn A. M.(1989). Experimental Study of Active Control for MDOF Seismic Structures, J. Eng. Mech., 115(8), pp.1609-1627.
23 Nishimura I.,Kobori T., Sakamoto M., Koshika N.,Sasaki K. and Ohrui S., Active tuned mass damper, Smart Materials and Structures, 1, pp.306-311.
24 Chang C.C. and Yang H.T.Y.(1995). Control of buildings using active tuned mass dampers, Journal of Engineering Mechanics, 121(3), pp.355-366.
25 Yang D.H., Shin J. H, Lee H.W., Kim S.K. and Kwak M.K(2017). Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm, Journal of Sound and Vibration, 392, pp.18-30
26 Loh C.H. and Chao C.H.(1996). Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-storey building, Journal of Sound and Vibration, 193(4), pp.773-792.
27 Ankireddi S. and Yang H.T.Y. (1996). Simple ATMD control methodology for tall buildings subject to wind loads, Journal of Structural Engineering, 122(1), pp.83-91
28 Li C., Liu Y. and Wang Z.(2003). Active multiple tuned mass dampers: A new control strategy, Journal of Structural Engineering, 32, pp.949-964.
29 Li C. and Liu Y.(2002). Active multiple tuned mass dampers for structures under the ground acceleration, Earthquake Engineering and Structural Dynamics, 31, pp.1041-1052.
30 Nagashima I. (2001). Optimal displacement feedback control law for active tuned mass damper, Earthquake Engineering and Structural Dynamics, 30, pp.1221-1242.
31 Rather F. and Alam M.(2021). Active Seismic Control of Structures Using Pole Placement Technique, Recent Advances in Structural Engineering, 135, pp.201-212.
32 Li C., Li J. and Qu Y.(2010). An optimum design methodology of active tuned mass damper for asymmetric structures, Mechanical Systems and Signal Processing, 24(3), pp.746-765.
33 Mackriell L.E., Kwok K.C.S. and Samali B. (1997). Critical mode control of a wind-loaded tall building using an active tuned mass damper, Engineering structures, 19, pp.834-842.
34 Samali B. and Al-Dawod M. (2003). Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller, Engineering structures, 25, pp.1597-1610.
35 Collins R., Basu B. and Broderick B.(2006). Control strategy using bang-bang and minimax principle for FRF with ATMDs, Engineering structures, 28, pp.349-356.
36 Li C., Yu Z., Xiong X. and Wang C.(2010). Active multiple-tuned mass dampers for asymmetric structures considering soil-structure interaction, Structural Control and Health Monitoring, 17, pp.452-472.
37 Kim Y.M., You K.P., You J, Y., Paek S.Y. and Nam B.H.(2016), “LQR Control of Along-Wind Responses of a Tall Building using Active Tuned Mass Damper, The 2016 World Congress on Advances in Civil, Environmental, and Materials Research(ACEM16), Jiju Island, Korea, August 28-September 1.
38 呂國華(1993)。考慮時間延遲之離散時間系統最佳直接輸出回饋控制。國立中興大學土木工程學系研究所碩士論文。
39 余心權(2001)。離散時間延遲系統直接加速度回饋控制。國立中興大學土木工程學系研究所碩士論文。
40 You K. P., You J. Y. and Kim Y. M.(2014). LQG Control of Along-Wind Response of a Tall Building with an ATMD, Mathematical Problems in Engineering, 2014. pp.1-7.
41 甘錫瀅、張敬昌、謝紹松(2003)。細說台北 101 高樓,科學月刊,第三十八卷,第八期,頁690-699。
42 Kareem A., Kijewski T. and Tamura T.(1999). Mitigation of motions of tall buildings with specific examples of recent applications, Wind and Structures, 2, pp.201-251.
43 Akira N. and Yutaka I.(2001). Overview of the application of active/semiactive control to building structures in Japan, Earthquake Engng Struct. Dyn., 30, pp.1565-1574.
44 Yoshiki I.(2009). Active and semi‐active vibration control of buildings in Japan—Practical applications and verification, Struct. Control Health Monit, 16, pp.703-723.
45 鍾立來、吳賴雲、李明璆、楊培堅(2004)。東帝士85國際廣場之結構主動控制,結構工程,第十四卷,第二期,頁45-65。
46 Soong T.T. and Dargush G.F.(1997). Passive Energy Dissipation Systems in Structural Engineering, New York: Wiley.
47 Lin C.C., Chung L.L. and Chll S. Y.(1996). Optimal discrete-time structural control using direct ouyput feedback, Engineering Structures, 18(6), pp.472-480.
48 Lin C.C. and Soong T.T.(2013). Seismic Protection of Structures Using Tuned Mass Dampers with Resettable Variable Stiffness, Advances in Science and Technology, 83, pp 75-84
49 Anil K.Chopra (2015). Dynamics of structures.,4th ed, New York: Pearson.
指導教授 賴勇安(Yong-An Lai) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明