博碩士論文 108322002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.139.237.144
姓名 王佑君(Yu-Chun Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋼結構建築之近斷層地震分析與效應
(Analyses and Effects of Structural Steel Buildings Subjected to Near-Fault Earthquake)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 近斷層地震可能在速度歷時上觀察到由指向性效應造成的脈衝波,或是位移歷時因斷層滑移效應產生永久地表位移的現象,兩者皆有長週期的速度脈衝。若是結構週期與速度脈衝週期相近,可能會造成結構較嚴重的破壞。然而,目前國內規範針對近斷層地震僅以近斷層放大因子NA、NV放大設計需求,並未針對近斷層地震動長週期速度脈衝特性做設計上考量。此外,高樓建築可能造成的高模態效應、特殊建築造成的非線性行為以及工程業界分析軟體運算速度越來越快都顯示出非線性動力分析(歷時分析)的必要性及其可行性,然而目前國內規範僅簡單敘述非線性動力分析方法,並未特別提及近斷層地震地震紀錄選取及縮放方法。本研究首先以1999年集集地震地震紀錄探討近斷層脈衝型地震動特性、初步研究脈衝週期Tp的合理性以及適用性。利用近斷層脈衝型地震動特性研究結果,以現行規範設計反應譜為基準,提出近斷層工址進行非線性動力歷時分析的具體建議方法。最後利用所提出之方法將五筆代表性近斷層地震以及兩筆遠域地震分別輸入至八層、十五層、三十層樓鋼結構建築(分別代表一般樓高、中高樓高、高樓高建築),以商業軟體ETABS 2017版本進行非線性動力歷時分析,探討近斷層地震對不同樓高鋼結構建築造成的影響。此外,研究過程中發現國內耐震設計規範對於高樓(週期大)建築地震橫力豎向分配之屋頂剪力過大的情形,建議以美國規範ASCE7的分配方式更改之。
本研究結果顯示指向性效應之脈衝型地震動很有可能對使結構產生高模態效應,對高樓建築可能產生較不利的影響;而斷層滑移造成之永久地表位移會使結構低樓層處產生較大的層間位移角,對低樓層處產生較為嚴重的破壞。建議近斷層工址需進行非線性歷時分析,以考量脈衝型地震動特性、真實模擬結構非線性行為進行檢核。近斷層工址建築物的興建需特別注意其適用性、考量近斷層脈衝型地震動對結構的負面影響。
摘要(英) It may be observed that near-fault earthquakes have pulse caused by forward-directivity effects in velocity time history, or permanent displacement due to fling effects in displacement time history, both of which have long-period velocity pulses. If the structure foundation period is close to the pulse period, it may cause serious damage to the structure. However, the current codes only use the near-fault amplification factors NA and NV to amplify the design requirements for near-fault sites, and do not make considerations for the long-period velocity pulse. In addition, the high mode effects that high-rise buildings may cause, the nonlinear behaviors caused by special buildings, and the faster and faster calculation speed of analysis software in the engineering industry all show the necessity and feasibility of nonlinear time history analysis. However, the current domestic codes do not specify the selection and scaling methods for near-fault ground motion. In this study, firstly, the records of Chi-Chi earthquake in 1999 were used to discuss the characteristics of near-fault ground motions, and to preliminarily study the applicability of pulse period Tp. Based on the characteristics of pulse-like ground motion, and relied on the current code design spectrum, a specific suggestion method for nonlinear time history analysis of near-fault sites is proposed. Finally, using the proposed method, five representative near-fault earthquakes and two far-field earthquakes were input into steel structure buildings of eight-, fifteen-, and thirty-stories building. We used the commercial software ETABS 2017 to conduct nonlinear time history analyses to explore the impact of near-fault earthquakes on structural steel buildings of different heights. During the research, it was observed that the domestic seismic design code for high-rise (large period) buildings has excessively large roof forces in the vertical distribution of seismic forces. It is recommended to change the distribution method according to ASCE7.
The results of this study show that the pulse-like ground motion of forward-directivity effect is likely to produce high-mode effect on the structure, and may have an unfavorable impact on the high-rise buildings. However, permanent displacement caused by the fling will cause a larger story drift ratio on the lower floors, which may be more dangerous to the structures. It is recommended that near-fault sites need to perform nonlinear time history analysis to consider the characteristics of pulse-like ground motions. The construction on near-fault sites requires special attention to its applicability and notification of the negative impact caused by near-fault pulse-like ground motions on structures.
關鍵字(中) ★ 近斷層地震
★ 耐震設計
★ 地震力豎向分配
★ 定比法
★ 非線性動力歷時分析
關鍵字(英) ★ Near-fault earthquake
★ seismic design
★ seismic force vertical distribution
★ scaling
★ nonlinear tine history analysis
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 3
1.3 研究方法 5
1.4 論文架構 6
第二章 文獻回顧 7
2.1 近斷層速度脈衝(Pulse-like) 7
2.1.1 近斷層速度脈衝成因與常見特徵 7
2.1.2 工址相對位置與速度脈衝振幅之關係 11
2.1.3 近斷層速度脈衝辨別方式 12
2.1.4 近斷層速度脈衝週期Tp 17
2.1.5 近斷層脈衝歷時資料庫 20
2.2 建築結構耐震設計 21
2.2.1 近斷層工址 21
2.2.2 彈性靜力分析 22
2.3 非線性動力歷時分析 24
2.3.1 地震動選擇與調整 24
2.3.2 定比法(Amplitude Scaling) 26
2.3.3 最大方向(Maximum Direction)加速度反應譜 27
2.4 建築物耐震性能 30
2.5 鋼結構塑鉸性能 30
2.6 高模態效應 32
第三章 地震動特性與縮放方法 33
3.1 地震紀錄 34
3.1.1 速度脈衝週期(Tp) 34
3.1.2 地震紀錄特性 36
3.1.3 地震紀錄反應與脈衝週期(Tp)的關係 40
3.2 地震動選擇與縮放方法 41
3.2.1 地震動選擇 41
3.2.2 地震動縮放考量 43
3.2.3 定比法(Amplitude scaling)步驟 46
第四章 設計範例分析 51
4.1 建築模型介紹 51
4.1.1 基本假設: 51
4.1.2 建築設計概要 52
4.1.3 結構基本動力特性 52
4.1.4 設計水平地震力及豎向分佈 53
4.1.5 應力比檢核以及水平地震力變形檢核 56
4.2 非線性動力歷時分析 56
4.2.1 模型設定 56
4.2.2 地震紀錄輸入 57
4.2.3 地震紀錄輸入方向 58
4.3 非線性動力歷時分析結果 59
4.3.1 樓層層間位移角 59
4.3.2 構件塑性轉角檢核 63
第五章 結果討論與建議 66
參考文獻 71
參考文獻 [1] Alavi, B., Krawinkler, H. (2000). “Design considerations for near fault ground motions.” US–Japan Workshop on the Effects of Near fault Earthquake Shaking, pp. 55-63.
[2] American Society of Civil Engineers, ASCE/SEI 7 (2002, 2005, 2010, 2016) Minimum Design Loads for Buildings and Other Structures. New York, USA.
[3] American Society of Civil Engineering (ASCE) (2013), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI41-13, U.S.A.
[4] American Institute of Steel Construction (AISC) (2016), Seismic provisions for structural steel buildings, AISC 341-16 , Chicago.
[5] Ancheta T. D., Darragh R. B., Stewart J. P., Seyhan E., Silca W. J., Chiou B.S.-J., Wooddell K. E., Graves R. W., Kottke A. R., Boore D. M., Kishida T., and Donahue J. L. (2013) PEER NGA-West2 Database, PEER Report, Headquarters at the University of California, Berkeley. (available at https://ngawest2.berkeley.edu/)
[6] Beyer, K., and Bommer, J. J. (2006) “Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion.” Bulletin of Seismological Society of America, Vol. 96,, pp. 1512–1522.
[7] Katrin Beyer, K & Bommer, J. J. (2007) “Selection and Scaling of RealAccelerograms for Bi-Directional Loading: A Review of Current Practice and Code Provisions.” Journal of Earthquake Engineering, 11:S1,pp. 13-45, DOI: 10.1080/13632460701280013
[8] Boore, D. M., J. Watson-Lamprey, N. A. Abrahamson (2006) “Orientation-independent measures of ground motion.” Bulletin of Seismological Society of America, Vol. 96, No. 4A, pp. 1502—1511.
[9] Boore, D. M. (2010) “Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion.” Bulletin of the Seismological Society of America, Vol. 100, No. 4, pp. 1830–1835.
[10] Boore, D. M. (2010) “Dependence of GMRotI50 on Tmax4Penalty for the penalty function: recommend use RotD50 rather than GMRotI50”
[11] Chiou, B., Darragh, R., Gregor, N., and Silva, W., 2008, “NGA Project strong motion database.” Earthquake Spectra, Vol. 24, No. 1, pp. 23-44
[12] Computers & Structures, INC. (2017) CSi Analysis Reference Manual, U.S.A.
[13] Huang, Yin-Nan, Andrew S. Whittaker, Nicolas Luco (2008) “Maximum Spectral Demands in the Near- Fault Region.” Earthquake Spectra, Vol. 24, No. 1, pp. 319–341.
[14] International Conference of Building Officials, ICBO (1997) Uniform Building Code. California, USA.
[15] International Conference of Building Officials, ICBO (2000) International Building Code. California, USA.
[16] Jack W. Baker (2007) “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, Vol. 97, No. 5, pp. 1486–1501.
[17] Kalkan E. and Kunnath S.K. (2006) “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.” Earthquake Spectra, Vol. 22, No. 2, pp. 367–390.
[18] Mavroeidis G. P., Papageorgiou A. S. (2003) “A Mathematical Representation of Near-Fault Ground Motions.” Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 1099–1131
[19] Mavroeidis G.P. (2013) “Seismic Actions Due to Near-Fault Ground Motion. Encyclopedia of Earthquake Engineering.” Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg.
[20] NIST (National Institute of Standards, and Technology) (2011) Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses, NIST GCR 11-917-15, NIST, Gaithersburg, MD.
[21] Shahi, S. K., and Baker, J. W. (2011) “An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis.” Bulletin of the Seismological Society of America, 101(2), pp. 742–755.
[22] Shahi, S.K. (2013) A Probabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment. A PhD Dissertation Submitted to the Department Of Civil & Environmental Engineering Department, Stanford University. (Adviser: Jack Baker)
[23] Shrey K. Shahi and Jack W. Baker (2014) “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Vol. 104, No. 5, pp. 2456–2466.
[24] Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson (1997) “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity.” Seismological Research Letters, Vol. 68, No. 1, pp. 199–222.
[25] Somerville, P. G. (1998) “Development of an Improved Representation of Near Fault Ground Motions.” In: Proceedings of the SMIP98 Seminar on Utilization of Strong Ground Motion Data, pp. 1–20.
[26] Somerville, P. G. (2003) “Magnitude Scaling of the Near Fault Rupture Directivity pulse.” Physics of the Earth and Planetary Int. 137, pp. 201–212.
[27] Somerville, P. G. (2005) “Engineering Characterization of Near Fault Ground Motions.” 2005 NZSEE Conference, pp. 1–8.
[28] Spudich, P. and Chiou, B.S.J.(2008) “Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory.” Earthquake Spectra, Vol. 24, No. 1, pp. 279-298.
[29] 內政部營建署(2005,2011),「建築物耐震設計規範與解說」。
[30] 內政部營建署(2007),「鋼構造建築物鋼結構設計技術規範(二)鋼結構極限設計法規範及解說」。
[31] 內政部營建署(2019),「建築技術規則」。
[32] 內政部建築研究所(2005),「建築物耐震性能設計規範之研擬」。
[33] 林克強、高墀修、莊勝智(2018),「宏泰世界大樓耐震性能評估報告」,委託單位:新構造工程顧問股份有限公司,國家地震工程研究中心。
[34] 高墀修(2018),「高樓層鋼結構耐震性能評估與補強方法」,碩士論文,王勇智指導,國立中央大學土木工程學研究所。
[35] 郭俊翔、趙書賢、許喬筑、呂學敏(2019),「近斷層脈衝歷時資料庫」,國家地震工程研究中心,NCREE-19-010。
[36] 經濟部中央地質調查所(2012),臺灣活動斷層分布圖。
[37] 鄧屬予(2002),板塊間看台灣地震。科學發展,第350卷,第12-19頁。
[38] 簡文郁、張志偉、張毓文(2020)。近斷層設計基準地震研究,國家地震工程研究中心。
[39] 劉勛仁、簡文郁、張毓文(2020)。台灣泛域工址設計用實測地震歷時篩選研究。中華民國第十五屆結構工程研討會暨第五屆地震工程研討會,編號:143,台南。
指導教授 王勇智(Yung-Chih Wang) 審核日期 2021-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明