以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:96 、訪客IP:18.223.172.180
姓名 鍾承哲(CHUNG,CHENG-JHE) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 斷層錯動引致地表構造物與管線位移之模擬
(Centrifuge modeling on the deformation of structure and pipeline by fault slipping)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 自然沉積土壤是非均勻且非均質材料,斷層錯動過程中,剪裂帶會通過強度與特性不同的土層,活動斷層錯動多伴隨永久的地表變形,並損壞鄰近斷層之結構物與地下維生管線,為了避免上述災損,過去國內外已有正逆斷層錯動針對上覆砂層或黏土層的相關研究成果,並制定建築物的安全規範。本研究以離心模型模擬 60 度傾角之正、逆斷層錯動,通過總厚度 8 m之較高強度膠結砂土層與石英砂土層,兩土層厚度比為7:3,並於地表設置高 9.6 m、接觸應力為48 kPa、分別具有樁基礎與淺基礎之建築物,土層中埋設長 58.56 m、管徑 0.16 m之鋁管線以模擬維生管線。試驗過程中記錄錯動期間的剪裂帶發展、斷層錯動高度、建築物傾斜角變量與地表高程變化的關係。最後,進行數值模擬偶合,以離散元素程式PFC2D,透過離心模型試驗結果,驗證數值模擬的準確性。
離心模型試驗結果顯示,在正斷層與逆斷層錯動狀況下,樁基礎建築物雖然會傾斜,但未發生翻覆;在錯動率 5 % 以下時,各試驗條件下建築物角變量皆超過1/100 之規定,建築物需要重建程度;具樁基礎建築物在正、逆斷層錯動率到達 50 % 時皆未發生翻覆,但具淺基礎建築物於正斷層錯動率 18.6 % 、逆斷層錯動率 46.0 % 時發生翻覆;在逆斷層試驗中地下管線的變形趨近於地表變形趨勢,正斷層試驗則因土層滑落使管線露出地表;具淺基礎建築物在逆斷層錯動時,地表變形的水平影響範圍約2倍的總土層厚度。以PFC2D進行數值模擬之前,需先以無圍壓縮試驗結果校正砂土層與軟岩層的設定參數,輸入參數可參考本研究之建議;以不同顆粒排列組成條件進行錯動模擬,會造成不同的剪裂帶發展結果;樁基礎勁度高於土層強度會造成建築物有較大的傾斜量與地表影響範圍。摘要(英) Naturally deposited soil is a non-uniform and heterogeneous material. In the process of fault dislocation, the shear zone will pass through soil layers with different strengths and characteristics. Active fault dislocation is often accompanied by permanent surface deformation, damage adjacent fault structures and underground dimensions. In order to avoid the above-mentioned damages, there have been related research results on the overlying sand or clay layer of normal and reverse faults at home and abroad in the past, and the safety regulations of buildings based on these results have been formulated. In this study, centrifuge modeling tests were used to simulate the dislocation of normal and reverse faults with a 60 degrees dip angle, through a high-strength cemented sand layer and a sand layer with a total thickness of 8 m. The thickness ratio of the two soil layers is 7:3, and a building with a pile foundation or a shallow foundation was built on this surface. The height of this building is 9.6 m and the contact of pressure is 48 kPa. An aluminum pipeline with a length of 58.56 m and a pipe diameter of 0.16 m is embedded in the soil layer to simulate a lifeline. During the test, the relationship between the development of the shear zone, the height of the fault dislocation, the inclination angle of the building and the change of the ground surface elevation during the dislocation period was recorded. Finally, the numerical simulation is coupled to verify the accuracy of the numerical simulation through the results of the centrifuge modeling tests with the discrete element program PFC2D.
The results of the centrifuge modeling test show that under the condition of normal and reverse fault, although the pile foundation building will tilt, it does not overturn. When the fault throw ratio is less than 5%, the building angle variable under each test condition exceeds 1 /100 stipulates which the building needs to be rebuilt. Besides, the building with piled foundation has not overturned when the fault rate of normal and reverse fault reaches 50%; however, the building with shallow foundation has overturned when the fault rate of normal fault is 18.6% and the fault rate of reverse fault is 46.0%, respectively. In the reverse fault test, the deformation of the underground pipeline has a trend toward the surface deformation, while the normal fault test causes the pipeline to be exposed to the surface due to soil slippage. When the reverse fault is dislocated, the surface of affected zone is about 2 times the total soil thickness. Before using PFC2D for simulation, it is necessary to calibrate the setting parameters of the sand and soft rock layers with the results of the unconfined compression test, which can refer to the suggestions of this research. The simulation of the dislocation with different particle arrangement and composition conditions will cause the different of the development result of the shear zone. Lastly, the stiffness of the pile foundation building is higher than the strength of the soil layer, which will cause the building to have a larger amount of inclination and the range of influence on the ground surface.關鍵字(中) ★ 正斷層
★ 逆斷層
★ 離心模型試驗
★ PFC2D數值模型
★ 建築物關鍵字(英) ★ reverse fault
★ normal fault
★ soil strata
★ centrifuge modeling
★ PFC2D numerical modeling論文目次 摘要 IV
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIII
符號說明 XV
一、 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
二、 文獻回顧 3
2-1 斷層概述 3
2-1-1 斷層地表變形調查 3
2-1-2 活動斷層定義與分類 3
2-1-3 破裂型態 6
2-2 現地案例 6
2-3 物理模型 10
2-3-1 1 g模型試驗 10
2-3-2 離心模型試驗 10
2-4 數值分析 14
2-5 國內相關法規 17
2-6 離心模型原理 19
2-6-1 離心模型之相似律 (scaling law) 20
2-6-2 離心模型試驗限制 21
三、 離心模型試驗設備與試驗步驟 23
3-1 試驗儀器與設備 23
3-1-1 地工離心機 23
3-1-2 資料擷取系統 25
3-1-3 斷層錯動模擬試驗箱 (Fault simulation container) 25
3-1-4 表面高程掃瞄裝置 27
3-1-5 線性可變差動變壓器 (LVDT) 27
3-1-6 攝影系統 28
3-1-7 移動式霣降儀 28
3-2 試驗材料 30
3-2-1 石英細砂 30
3-2-2 色砂 32
3-2-3 水泥混石英細砂 34
3-3 建築模型設計與管線 36
3-4 斷層錯動模擬試體準備與步驟 38
四、 試驗內容與結果討論 39
4-1 試驗內容 39
4-2 試驗數據相關名詞定義 41
4-2-1 座標原點 41
4-2-2 建築物位置(S/B) 41
4-2-3 斷層錯動率(r) 42
4-2-4 建築物傾斜角變量 42
4-3 試驗結果 43
4-3-1 正斷層淺基礎試驗結果 (NS) 43
4-3-2 正斷層樁基礎試驗結果 (NP) 48
4-3-3 逆斷層淺基礎試驗結果 (RS) 54
4-3-4 逆斷層樁基礎試驗結果 (RP) 60
4-4 綜合討論 66
4-4-1 正斷層試驗結果 66
4-4-2 逆斷層試驗結果 67
五、 數值模擬分析 68
5-1 離散元素法數值軟體介紹 68
5-2 數值模型無圍壓縮試驗與參數探討 70
5-2-1 建模步驟 70
5-2-2 無圍壓縮試驗數值模型參數探討 71
5-2-3 無圍壓縮模擬試驗結果 72
5-3 數值斷層離心模型模擬試驗 84
5-3-1 初始參數設定與步驟 84
5-3-2 隨機自由場錯動探討 89
5-3-3 淺基礎建築物於逆斷層錯動之數值模擬 97
5-3-4 樁基礎建築物於逆斷層錯動之數值模擬 107
六、 結論與建議 118
6-1 結論 118
6-2 建議 119
參考文獻 120
附錄 123參考文獻 [1] 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
[2] 中華民國內政部營建署,建築技術規則,中華民國內政部營建署(2008)。
[3] 李崇正,「離心模型試驗在大地工程之應用」,地工技術,第36集,第76-91頁(1991)。
[4] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第30卷,第4期,第89-92頁(2003)。
[5] 李錫堤、康耿豪、鄭錦桐、廖啟雯,「921集集大地震之地表破裂及地盤變形現象」,地工技術,第81期,第5-16頁(2000)。
[6] 林啟文、盧詩丁、陳文山,「臺灣活動斷層分布圖2012年版說明書」,經濟部中央地質調查所特刊,第26號,第1-30頁(2012)。
[7] 林啟文、陳文山、饒瑞鈞,「台灣活動斷層調查地近期發展」,經濟部中央地質調查所特刊,第18號,第85-110頁(2007)。
[8] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央地質調查所報告,第9號,臺北(2011)。
[9] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧,「以離心模型試驗探討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第28號,第129-151頁(2014)。
[10] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第15期,第14-25頁(2017)。
[11] 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立台灣大學土木研究所,臺北(2008)。
[12] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學研究所,桃園(2013)。
[13] 張庭傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩士論文,國立中央大學土木工程學研究所,桃園(2014)。
[14] 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學研究所,桃園(2014)。
[15] 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程學研究所,桃園(2013)。
[16] 鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,博士論文,國立臺灣大學土木工程學研究所,臺北(2007)。
[17] Taylor, R.N., “Geotechnical Centrifuge Technology,” CRC Press, USA, pp.19-33 (1994).
[18] Ahmadi, M., Moosavi, M., and Jafari, M. K., “Experimental investigation of reverse fault rupture propagation through wet granular soil,” Engineering Geology, Vol. 239, pp. 229-240 (2018).
[19] Ashtiani, M., Ghalandarzadeh, A., and Towhata, I., “Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture,” Canadian Geotechnical Journal, Vol. 53, No. 3, pp. 505-519 (2016).
[20] Bieniawski, Z. T., “The design process in rock engineering,” Rock Mechanics and Rock Engineering, Vol. 17, pp. 183-190 (1984).
[21] Bjerrum, I., “Allowable Settlement of Structures,” Proceedings of European Conf. on Soil Mech. and Found. Eng., Weisbaden, Germany, Vol. 2, pp. 35-137 (1963).
[22] Bonilla, M. G., “Evaluation of potential surface faulting and other tectonic deformation,” U.S. Geological Survey, Open-File Report 82-732 (1982).
[23] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of normal fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 585-605 (2008a).
[24] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of reverse fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 607-628 (2008b).
[25] Bray, J.D., Seed, R.B., Cluff, L.S., and Seed, H. B., “Earthquake fault rupture propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.43–561 (1994).
[26] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault ruptures propagation through cohesive soil,” Journal of geotechnical engineering, Vol. 120, pp. 562-580 (1994).
[27] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C., Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth Sciences, Vol 31, pp. 204-213 (2007).
[28] Cole, D. A., and Lade, P. V., “Influence zones in alluvium over dip-slip faults,” Journal of geotechnical engineering, Vol. 110, pp. 599-615 (1984)
[29] Demircia, H.E., Bhattacharyaa, S. Karamitrosb, D., and Alexander, N., “Experimental and numerical modelling of buried pipelines crossing reverse faults,” Soil Dynamics and Earthquake Engineering, Vol.114, pp. 198-214 (2018).
[30] Deresiewicz, H., “Mechanics of Granular Matter,” Advances in Applied Mechanics, Vol. 5, pp. 233-306 (1958).
[31] ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
[32] Itasca Consulting Group Inc., PFC2D (Particle flow code in 2 dimensions), Verson 4.0 (manual), Itasca Consulting Group Inc., Minneapolis, MN:ICG (2008).
[33] Karamitros, D., Bouckovalas., G., and Kouretzis, G., “Stress analysis of buried steel pipelines at strike-slip fault crossings,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp. 200–211 (2007).
[34] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake: Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[35] Lee, J. W., Hamada, M., Tabuchi, G., and Suzuki, K., “Prediction of fault rupture propagation based on phisical model tests in sandy soil deposit,” 13th World Conference on Earthquake Engineering, B.C., Canada, Paper No. 119 (2004).
[36] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[37] McCalpin, J. P., Paleoseismology, Academic Press, USA, pp.171-207 (2009).
[38] Masoumi, H., Douglas, K.J., Saydam, S., and Hagan, P., “Experimental study of size effects of rock on UCS and point load tests,” American Rock Mechanics Association, No. 215 (2012).
[39] Potyondy, D. O., Cundall, P. A., “Abonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 1329-1364 (2004).
[40] Rizkalla, M., and Read, R. S., “Pipeline geohazards planning, design, construction and operations,” ASME Press, New York, USA, pp. 390-443 (2019)
[41] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan (2020).
[42] Takemura, J., Kusakabe, O., and Yao, C., “Development of a fault simulator for soils under large vertical stress in a centrifuge,” ICE, USA, Vol. 20, pp. 118-131 (2020).指導教授 洪汶宜(Hung, Wen-Yi) 審核日期 2021-9-1 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare