參考文獻 |
1. 王珮茹、曾仁杰、陳奕丞、陳映璇,營建工區勞工安全科技化管理之建置先期研究,科技部補助專題研究計畫成果報告,2019,建國科技大學土木工程系暨土木與防災研究所
2. 伍勝民,(2019),.營造工地安全衛生管理之探討,碩士論文,朝陽科技大學,營建工程所,台中市,台灣。
3. 江川義之、庄司卓郎、中村隆宏,“Change of Working Behaviors by Spreading Safety Information in Construction Sites”,產業安全研究所特別研究報告,第28期,第21-32 頁,2003
4. 吳卓夫,(2005),灰系統理論應用在建築工地職災發生頻率預測之研究,碩士論文,營建管理研究所,新竹市,台灣。
5. 我國職業災害因素分析與防護策略研究—製造業與營造業,(2019),勞動部勞動及職業安全衛生研究所
6. 林楨中、戴基福,「營造業勞工不安全行為及其原因之探討」,工業安全衛生月刊,中華民國工業安全衛生協會,第179 卷,第5 期,第46-56 頁,2004。
7. 林祺桓,(2012),中小型營造業導入職業安全衛生管理之探討,碩士論文,中華大學,營建管理所,新竹市,台灣。
8. 陳盈月,「混凝土橋樑上部結構施工安全之分析與探討—以懸臂式施工法與支撐先進工法為例」,碩士論文,國立台灣科技大學營建工程系,1999。
9. 勞動部職業安全衛生署,(2019),勞動檢查統計年報
10. 馮文政,(2009),高科技廠房營建階段高處作業防墜措施之探討,碩士論文,工學院工程技術與管理學程,新竹市,台灣。
11. Albert M.V., Kording K., Herrmann M., Jayaraman A. Fall classification by machine learning using mobile phones. PLoS ONE. 2012;7:e36556. doi: 10.1371/journal.pone.0036556.
12. Anderson, D.; Keller, J.M.; Skubic, M.; Chen, X.; He, Z. Recognizing Falls from Silhouettes. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6388–6391.
13. F. Hossain, M. L. Ali, M. Z. Islam, and H. Mustafa, “A direction-sensitive fall detection system using single 3D accelerometer and learning classifier,” in Proceedings of the 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), pp. 1–6, Dhaka, Bangladesh, December 2016.
14. F. Wu, H. Zhao, Y. Zhao, and H. Zhong, “Development of a wearable-sensor-based fall detection system,” International Journal of Telemedicine and Applications, vol. 2015, Article ID 576364, 11 pages, 2015.
15. Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. A depth-based fall detection system using a Kinect® sensor. Sensors 2014, 14, 2756–2775.
16. He J., Bai S., Wang X. An unobtrusive fall detection and alerting system based on Kalman filter and Bayes network classifier. Sensors. 2017;17:1393. doi: 10.3390/s17061393.
17. He, J.; Bai, S.; Wang, X. An unobtrusive fall detection and alerting system based on Kalman filter and Bayes network classifier. Sensors 2017, 17, 1393
18. Heinrich, H. W., “Industrial Accident Prevention - A Scientific Approach (4th ed.) ”. :McGraw- Hill Book Company,New York,1959.
19. Ibukun Awolusi, Eric Marks, Matthew Hallowell,(2018).Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices, Automation in Construction ,85 (2018) ,96–106.
20. Ibukun Awolusi, Eric Marks,⁎, Matthew Hallowell,(2018)Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices,Automation in Construction 85 (2018) 96–106
21. J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable sensors for reliable fall detection,” in Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 3551–3554, Shanghai, China, January 2005.
22. Jefiza, E. Pramunanto, H. Boedinoegroho, and M. H. Purnomo, “Fall detection based on accelerometer and gyroscope using back propagation,” in Proceedings of the 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 1–6, Yogyakarta, Indonesia, September 2017.
23. Kurniawan A., Hermawan A.R., Purnama I.K. E. A Wearable Device for Fall Detection Elderly People Using Tri Dimensional Accelerometer; Proceedings of the 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA); Lombok, Indonesia. 28–30 July 2016; pp. 671–674.
24. L. Ciabattoni, G. Foresi, A. Monteriù, D. P. Pagnotta, and L. Tomaiuolo, “Fall detection system by using ambient intelligence and mobile robots,” in Proceedings of the 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 130-131, Novi Sad, Serbia, May 2018.
25. Lee, Y.S.; Chung, W.Y. Visual sensor based abnormal event detection with moving shadow removal in home healthcare applications. Sensors 2012, 12, 573–584.
26. M. Guvensan, A. Kansiz, N. Camgoz, H. Turkmen, A. Yavuz, and M. Karsligil, “An energy-efficient multi-tier architecture for fall detection on smartphones,” Sensors, vol. 17, no. 7, p. 1487, 2017.
27. M. Shahiduzzaman, “Fall detection by accelerometer and heart rate variability measurement,” Global Journal of Computer Science and Technology, vol. 15, no. 3, 2015.
28. M. V. Albert, K. Kording, M. Herrmann, and A. Jayaraman, “Fall classification by machine learning using mobile phones,” PLoS One, vol. 7, no. 5, Article ID e36556, 2012.
29. M.-S. Lee, J.-G. Lim, and K.-R. Park, “Unsupervised clustering for abnormality detection based on the tri-axial accelerometer,” in Proceedings of the ICCAS-SICE, pp. 134–137, Fukuoka City, Japan, August 2009.
30. Mao, X. Ma, Y. He, and J. Luo, “Highly portable, sensor-based system for human fall monitoring,” Sensors, vol. 17, no. 9, p. 2096, 2017.Özdemir and B. Barshan, “Detecting falls with wearable sensors using machine learning techniques,” Sensors, vol. 14, no. 6, pp. 10691–10708, 2014.
31. Ojetola, O.; Gaura, E.I.; Brusey, J. Fall Detection with Wearable Sensors-SAFE (Smart Fall Detection). In Proceedings of the 7th International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 318–321
32. P. Kostopoulos, A. I. Kyritsis, M. Deriaz, and D. Konstantas, “F2D: a location aware fall detection system tested with real data from daily life of elderly people,” in Proceedings of the 17th International Conference on E-Health Networking, Application & Services (HealthCom), pp. 397–403, Boston, MA, USA, October 2015.
33. P. Tsinganos Skodras, “On the comparison of wearable sensor data fusion to a single sensor machine learning technique in fall detection,” Sensors (Basel), vol. 18, no. 2, p. 592, 2018.
34. P. Vallabh, R. Malekian, N. Ye, and D. C. Bogatinoska, “Fall detection using machine learning algorithms,” in Proceedings of the 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–9, Split, Croatia, September 2016.
35. Pierleoni P., Belli A., Palma L., Pellegrini M., Pernini L., Valenti S. A high reliability wearable device for elderly fall detection. IEEE Sens. J. 2015;15:4544–4553. doi: 10.1109/JSEN.2015.2423562.
36. Pierleoni, P.; Belli, A.; Palma, L.; Pellegrini, M.; Pernini, L.; Valenti, S. A high reliability wearable device for elderly fall detection. IEEE Sens. J. 2015, 15, 4544–4553.
37. Poi VoonEr,Kok KiangTan.Wearable solution for robust fall detection.Assistive Technology for the Elderly. 2020, Pages 81-105
38. Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Monocular 3D Head Tracking to Detect Falls of Elderly People. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6384–6387.
39. S. Yu, H. Chen, and R. A. Brown, “Hidden Markov model-based fall detection with motion sensor orientation calibration: a case for real-life home monitoring,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 6, pp. 1847–1853, 2018.
40. S. Zhao, W. Li, W. Niu, R. Gravina, and G. Fortino, “Recognition of human fall events based on single tri-axial gyroscope,” in Proceedings of the IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6, Zhuhai, China, March 2018.
41. Sorvala, A.; Alasaarela, E.; Sorvoja, H.; Myllyla, R. A Two-Threshold Fall Detection Algorithm for Reducing False Alarms. In Proceedings of the 6th International Symposium on Medical Information and Communication Technology (ISMICT), La Jolla, CA, USA, 25–29 March 2012; pp. 1–4
42. T. B. Rodrigues, D. P. Salgado, M. C. Cordeiro et al., “Fall detection system by machine learning framework for public health,” Procedia Computer Science, vol. 141, pp. 358–365, 2018.
43. T. Chaitep and J. Chawachat, “A 3-phase threshold algorithm for smartphone-based fall detection,” in Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 183–186, Phuket, Thailand, June 2017.
44. Taramasco, T. Rodenas, F. Martinez et al., “A novel monitoring system for fall detection in older people,” IEEE Access, vol. 6, pp. 43563–43574, 2018.
45. X. Yang, A. Dinh, and L. Che, “A wearable real-time fall detector based on Naive Bayes Classifier,” in Proceedings of the 23rd Canadian Conference on Electrical and Computer Engineering (CCECE 2010), pp. 1–4, Calgary, AB, Canada, May 2010.
46. Y. Choi, A. S. Ralhan, and S. Ko, “A study on machine learning algorithms for fall detection and movement classification,” in Proceedings of the International Conference on Information Science and Applications, pp. 1–8, Jeju Island, South Korea, April 2011.
47. Y. Wang, K. Wu and L. M. Ni, "WiFall: Device-Free Fall Detection by Wireless Networks," in IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581-594, 1 Feb. 2017, doi: 10.1109/TMC.2016.2557792.
48. Yang, L.; Ren, Y.; Hu, H.; Tian, B. New fast fall detection method based on spatio-temporal context tracking of head by using depth images. Sensors 2015, 15, 23004–23019.
49. Yi-Cho Fang, Ren-Jye Dzeng. Accelerometer-based fall-portent detection algorithm for construction tiling operation.Automation in Construction.Volume 84, December 2017, Pages 214-230
50. Young-Hoon Nho, Jong Gwan Lim, Dong-Soo Kwon(2020),Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device, IEEE Access, ,40389 – 40401, DOI:10.1109/ACCESS.2020.2969453
51. Yu, M.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J. A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1274–1286. |