姓名 |
廖于婷(Yu-Ting Liao)
查詢紙本館藏 |
畢業系所 |
土木工程學系 |
論文名稱 |
考慮接頭連結效應之非線性構架動力分析 (Dynamic Analysis of Nonlinear Frame Considering Joint Link Effect)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放)
|
摘要(中) |
根據過去經驗,結構進入非線性時,由於計算複雜化,容易發生數值發散問題,導致無法順利完成分析,或分析時間過長,為解決傳統有限元素分析現有之困難點,本研究引入新隱式非線性動力有限元素法(New Implicit Nonlinear Dynamic Finite Element Method, NINDFEM)求解結構運動方程式,並開發一系列非線性元素。此有限元素法適用於處理大變形、大變位與剛體運動等問題,可以同時考量結構於極限狀況下,各構件進入非線性之動力行為,如大梁間的碰撞、橋面版掉落以及最終崩塌情形。
本研究將開發三維非線性元素於新隱式非線性動力有限元素法中,其一三維元素為非線性桁架元素,含有雙線性模型(Bilinear Model)和具可開孔塑性模型(Gap or Hook Plastic Model),用以模擬橋梁之抗拉拔裝置或防落橋裝置等軸力構件於強震中之非線性行為。另一三維元素為非線性連結與支承元素,含有雙線性模型(Bilinear Model)、Takeda模型與具可開孔塑性模型(Gap or Hook Plastic Model),用以模擬橋梁部分構件與裝置於地震中之非線性行為,如橋柱柱底塑鉸區、伸縮縫等。進行數值驗證時,將在同等模型及相同分析條件下與傳統有限元素法比較分析結果,證實所發展之三維元素之正確性,並比較新隱式非線性動力有限元素法與傳統有限元素法運算效率及準確性。 |
摘要(英) |
According to experience, when the structures go into the nonlinearity, the numerical divergence problem is prone to occur. Because the process of calculation becomes very complicated, the analysis cannot be completed successfully or the analysis time is too long. To solve the existing difficulties of traditional finite element analysis, this research introduces the New Implicit Nonlinear Dynamic Finite Element Method (hereinafter referred to as NINDFEM) to solve the structural motion equations and develop a series of nonlinear elements. This method is suitable for dealing with problems such as large deformation, large displacement, and rigid body motion. It can also consider the nonlinear dynamic behavior of each member under the limited condition of the structure, such as the collision between the beams, the falling of the bridge deck, and the situation of final collapse.
This research develops three-dimensional nonlinear truss elements, including the Bilinear Model and Gap or Hook Model, which are used to simulate the axial force components such as the tensile device of the bridge or the anti-dropping device of the bridge. The other three-dimensional element is a nonlinear connection and support element, including a bilinear model (Bilinear Model), a plastic model with a hole (Gap or Hook Model), and a Takeda model. It is used to simulate the nonlinear behavior of some bridge components and devices in earthquakes, such as the plastic hinge region at the bottom of the bridge column, expansion joints, etc.To verify the correctness of the developed three-dimensional elements, the analysis results will be compared under the same model and the same analysis conditions. Additionally, we compared the computational efficiency and accuracy of NINDFEM and the traditional finite element method. |
關鍵字(中) |
★ 新隱式非線性動力有限元素法 ★ 非線性材料 ★ 動力分析 ★ 塑鉸 |
關鍵字(英) |
★ New Implicit Nonlinear Dynamic Finite Element Method ★ nolinear material ★ dynamic analysis ★ plastic hinge |
論文目次 |
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 新隱式非線性動力有限元素法 3
2.2 Newmark-β直接積分法 4
2.3 HHT-alpha積分法 4
2.4 Takeda 模型 4
第三章 理論與分析方法 5
3.1 新隱式非線性動力有限元素法 5
3.1.1 隱式非線性運動方程式 6
3.1.2 隱式直接積分法 8
3.2 桁架元素 12
3.2.1 元素變形 12
3.2.2 線性桁架元素 13
3.2.3 雙線性桁架元素 13
3.2.4 可壓縮開孔模型 14
3.2.5 可拉伸開孔模型 15
3.2.6 元素勁度阻尼力 16
3.3 連結與支承元素 17
3.3.1 元素局部座標系統 18
3.3.2 元素變形 22
3.3.3 線性模型 24
3.3.4 雙線性模型 24
3.3.5 Takeda模型 25
3.3.6 可壓縮開孔模型 26
3.3.7 可拉伸開孔模型 27
3.3.8 元素勁度力 27
3.3.9 元素勁度阻尼力 28
3.4 地表位移輸入法 32
第四章 分析模擬及驗證 45
4.1 桁架元素 45
4.1.1 雙線性桁架元素 45
4.1.2 可壓縮開孔桁架元素 46
4.1.3 可拉伸開孔桁架元素 47
4.2 連結與支承元素 48
4.2.1 雙線性連結元素 48
4.2.2 Takeda連結元素 48
4.2.3 可壓縮開孔連結元素 49
4.2.4 可拉伸開孔連結元素 50
4.3 小結 51
第五章 房屋結構實例分析與討論 67
5.1 目標房屋結構與分析模型 67
5.2 數值分析模型 67
5.3 分析結果 67
5.4 塑鉸分析元素比較 68
第六章 結論與未來展望 75
6.1 結論 75
6.2 未來展望 76
參考文獻 77 |
參考文獻 |
[1] Lee, T.Y., Chung, K.J. and Chang, H. (2018), “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness,” International Journal of Structural Stability and Dynamics, 18(3), 1850043.
[2] Lee, T.Y., Chung, K.J. and Chang, H. (2017) “A new implicit dynamic finite element analysis procedure with damping included,” Engineering Structures, 147, 530-544.
[3] 鍾昆潤(2018),“非耦合隱式動力有限元素分析及其於結構崩塌分析之應用”,國立中央大學土木系博士論文。
[4] N. M. Newmark (1959), “A Method of Computation for Structural Dynamics,” ASCE Journal of the Engineering Mechanics Division, Vol. 85, pp. 67-94.
[5] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor (1977), “Improved numerical dissipation for time integration algorithms in structural dynamics”, Earthquake Engineering and Structural Dynamics, 5,pp.283–292.
[6] Takeda, T., Sozen, M. A., and Nielsen, N. N. (1970). “Reinforced concrete response to simulated earthquakes.” Journal of the Structural Division, ASCE, 96(12). 2557-2573.
[7] Chopra, A. K. (2012), Dynamics of structures: theory and applications to earthquake engineering (4th edn), Prentice-Hall: Englewood Cliffs, New Jersey.
[8] 陳柏宏(2008),“運用向量式有限元素法於隔震橋梁之非線性動力分析”,國立中央大學土木系碩士論文。
[9] 蘇俊全(2011),“強震中橋梁極限破壞三維分析”,國立中央大學土木系碩士論文。
[10] 王聖文(2020),“含結構阻尼之三維非線性動力歷時分析”,國立中央大學土木系碩士論文。 |
指導教授 |
李姿瑩(Tzu-Ying Lee)
|
審核日期 |
2022-1-25 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|