博碩士論文 100681002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.219.206.102
姓名 黃威巽(Wei-Syun Huang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 區域大氣空氣品質模式之排放量修正影響探討:利用衛星資料調整污染排放量與個案研究
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) COVID-19疫情爆發所導致的中國封城停工事件,是未曾發生大範圍且長時間之實際污染排放大幅減量情況,導致空氣品質改善,甚至下風處臺灣亦受影響。藉此,本研究旨在應用WRF/CMAQ模式模擬探討因COVID-19疫情爆發導致前述實際排放驟然減量的情況下,評估其對下風處臺灣所造成的影響。並利用OMI-NO2衛星調整現有之排放資料,使其更為接近實際情況。模擬受到COVID-19疫情影響之東北季風個案一 (2020/1/28-2/1) ,以及於2018年相近季節時期且相似氣象條件之個案二 (2018/1/30-2/2),以期探討在相同的方法與設定下,是否同樣能夠改善境外污染對臺灣之影響的模擬結果。
個案一利用衛星資料把原始排放資料調整成因疫情事件引發異常排放情況,以及受到中國大範圍封城停工影響,東亞區域的污染排放亦變動,整體為大幅降低。模擬結果分析顯示若使用OMI-NO2衛星資料調整全部排放物種之後,富貴角站及板橋站近地面PM2.5濃度顯著的降低,且更為接近實際的觀測值。IOA (Index Of Agreement,常用於比對兩數串之一致性,一般而言大於0.6即視為高相關性) 於富貴角站從原先的0.72提升至0.89,而板橋站也從0.51提升至0.82,相當顯著。
相較於個案一,個案二期間並未受到COVID-19及其導致之封城停工影響,污染排放因此受衛星資料所調整的幅度較小。根據模擬跟觀測比對結果顯示整體準確度較差,但在利用衛星資料調整全部排放的模擬結果比原始排放與僅調整東亞NOx排放更為接近實際觀測值。
此外,比較富貴角及板橋站之模擬結果與PM2.5成分觀測數據,進一步評估模式使用原始排放量與利用OMI-NO2調整污染排放量的模擬表現,結果顯示使用調整過後的排放量比原始排放模擬結果降低與觀測值的偏差。
綜合模擬分析結果顯示利用OMI-NO2衛星資料調整bottom-up的排放資料庫,能夠掌握污染排放出現重大變化期間污染物排放之變化,進而提升對PM2.5濃度和成分之模擬準確度,但對於污染排放僅有些微改變的情境則仍有改善的空間。
最後為更瞭解東亞境外污染移入對北臺灣的影響,本研究進一步利用調整後之排放量對酸沉降 (NO3-及SO42-) 進行模擬探討,並針對上述兩個個案期間北臺灣之降雨事件進行分析。雖然模擬結果不盡理想,但發現NO3-不論是乾或溼沉降量,在隨著排放情境 (不同的東亞減排情況) 的不同而有較為顯著之比例改變,而SO42-沉降量變化較不明顯。綜合上述探討,藉由近即時衛星資料調整排放資料庫,或可精進提升酸沉降及短期空品預報之模擬。
摘要(英) The lockdown of cities in China caused by the outbreak of the COVID-19 pandemic has led to unprecedented nationwide large-scale and long-term reduction in atmospheric pollution emissions that has not ever occurred. It resulted in the improvement of the country’s air quality, and even the air quality over the downwind Taiwan. Hence, this study aims to apply the WRF/CMAQ model simulation to investigate the aforementioned abrupt reduction of emissions due to the outbreak of COVID-19, and to evaluate its impact on downwind Taiwan. The OMI-NO2 satellite data is used to adjust the existing emission data to make it closer to the actual situation. Simulation and discussion are conducted for 2 cases to explore the possibility to adjust the emission through satellite data when Taiwan is under the influence of long-range transport of foreign pollution. They are (i) case 1 (2020/1/28-2/1) during northeast monsoon with influence from the COVID-19 pandemic lockdown, (ii) case 2 (2018/1/30-2/2) with similar weather conditions during the similar season but in 2018 without the influence of COVID-19.
In case 1, satellite data was used to adjust the original emission data to the abnormal emission variation caused by the pandemic. Affected by the large-scale closure of cities in China and the suspension of work, the pollution emissions in the East Asia region fluctuated greatly, and the overall decrease was significant. The simulation results using the OMI-NO2-adjusted emission for all species show that the near-surface PM2.5 concentrations at Cape Fuguei and Banqiao are significantly reduced, and are closer to the observed values. The correlation of IOA (Index Of Agreement, often used to compare the consistency of two datasets, is considered highly correlated when greater than 0.6) has significantly increased for Cape Fuguei from the original 0.72 to 0.89, and the Banqiao station also increased from 0.51 to 0.82.
Compared with case 1, case 2 was not affected by COVID-19 and the resulting closure of the city, so the adjustment of pollution emissions through OMI-NO2 is much smaller. The overall accuracy of the model performance for case 2 is poor. Nevertheless, the model with OMI-NO2-adjusted emission for all species performed much better compared to the OMI-NO2-adjusted emission that only adjusted for NOx in East Asia.
In addition, the modelled PM2.5 chemical composition of Cape Fuguei and Banqiao Stations was compared to the observation data to further evaluate the model performance of using the original and OMI-NO2-adjusted emissions, respectively. The results show that using the OMI-NO2-adjusted emissions reduces the deviation from the observed values compared to the original emissions simulation results for PM2.5.
Based on the above simulation results, the study shows that the use of OMI-NO2 data to adjust the bottom-up emission can better represent the changes in pollutant emissions during major changes in pollution emissions, thereby improving the simulation accuracy of PM2.5 concentration and composition. Nevertheless, there is still room for improvement in scenarios where pollution emissions are only slightly changed.
Finally, in order to better understand the impact of pollution transport from East Asia to northern Taiwan, this study further used the OMI-NO2-adjusted emissions to simulate and explore acid deposition (NO3- and SO42-). A simulation study was conducted on the rainfall events in northern Taiwan during the above two cases. It can be found that NO3- whether it is dry or wet deposition, has a more significant proportional change with different emission scenarios (different East Asian emission reductions), while the variation of SO42- deposition is less significant. Based on the above discussion, the adjustment of the emission database with near real-time satellite data may improve the simulation of acid deposition and short-term air quality forecast.
關鍵字(中) ★ WRF/CMAQ
★ COVID-19
★ 細懸浮微粒
★ 長程傳送
★ 衛星反演
關鍵字(英) ★ WRF/CMAQ
★ COVID-19
★ PM2.5
★ Long-range transport
★ Satellite retrieval
論文目次 摘要 i
Abstract iii
誌謝 vi
目錄 vii
表目錄 viii
圖目錄 x
符號說明 xv

一、前言 1
二、文獻回顧 4
2-1 東亞區域冬季氣象特性 4
2-2 PM2.5對健康的影響 5
2-3 大氣與空氣品質模式之應用 6
2-4 模擬境外污染移入對臺灣之影響 8
2-5 衛星資料與空氣污染排放資料庫 11
2-6 東亞COVID-19期間之研究 14
三、研究方法 16
3-1 地面觀測資料 16
3-2 OMI-NO2 衛星反演資料 18
3-3 數值模式及模式設定 19
3-4 利用OMI-NO2衛星資料調整排放資料庫 25
3-5 模式敏感度測試與個案設定 32
3-6 模式模擬結果之校驗方法 35
四、結果與討論 37
4-1 模擬結果之數據校驗 37
4-2 個案1 (2020/1/28-2020/2/1) 之PM2.5模擬結果探討 50
4-3 個案2 (2018/1/30-2018/2/2) 之PM2.5模擬結果探討 67
4-4 PM2.5化學成分比對 78
4-5 模擬不準確性及侷限之探討 82
4-6 模擬酸性溼沉降之探討 86
五、結論與展望 97
參考文獻 100
附錄A 論文附圖 119
附錄B 論文發表 151
參考文獻 林能暉、嚴明鉦、林唐煌、莊銘棟、王聖翔、鄭方怡,2020。”東亞與臺灣空氣品質變異分析及衛星遙測資訊前瞻應用專案計畫”,行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、王琳麒,2020。” 全國酸雨監測及成份分析調查評估專案計畫” ,行政院環境保護署。
Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J. M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., Schwartz, J., & Katsouyanni, K. (2001). Acute effects of particulate air pollution on respiratory admissions - Results from APHEA 2 project. American Journal of Respiratory and Critical Care Medicine 164, 1860-1866.
Anil, I., Alagha, O., Blaisi, N. I., Mohamed, I. A., Barghouthi, M. H., & Manzar, M. S. (2019). Source identification of episodic rain pollutants by a new approach: combining satellite observations and backward air mass trajectories. Aerosol Air Qual. Res. 19 (12), 2827–2843. https://doi.org/10.4209/aaqr.2019.04.0187.
Appel, K. W., Napelenok, S.L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., & Young, J. O. (2017). Description and evaluation of the Community Multiscale Air Quality (CMAQ) model version 5.1. Geosci. Model Dev, 10, 1703–1732, doi:10.5194/gmd-1703-2017.
Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., & Smith, S. C. (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655-2671.
Byun, D. W., & Ching, J. K. S. (1999). Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system. U.S. EPA, Office of research and development Washington, DC 20460, EPA/600/R-99/030.
Chan, C. B., Ryan, D. A. J., & Tudor-Locke, C. (2004). Health benefits of a pedometer-based physical activity intervention in sedentary workers. Preventive Medicine 39, 1215-1222.
Chan, C. Y., Chan, L. Y., Harris, J. M., Oltmans, S. J., Blake, D. R., Qin, Y., Zheng, Y. G., & Zheng, X. D. (2003). Characteristics of biomass burning emission sources, transport, and chemical speciation in enhanced springtime tropospheric ozone profile over Hong Kong. Journal of Geophysical Research 108, 4015, doi:10.1029/2001JD001555.
Chan, C. C., Chuang, K. J., Chen,W .J., Chang,W. T., Lee, C. T., & Peng, C. M. (2008). Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ. Res. 106 (3), 393–400. https://doi.org/10.1016/j.envres.2007.09.006.
Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi J., Zhang W., Shi, J., Yang, L., Li, D., & Li, J. (2014a). Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research, 15, 15-30.
Chen, T. C., & Yen, M. C. (1999). Annual variation of surface pressure on a high East Asian mountain and its surrounding low areas. J. Climate, 12, 2711-2716.
Chen, T. C., Yen, M. C., & Tsay, J. D. (2000). Annual and semiannual variation of surface pressure in Taiwan. J. Climate, 13, 1436-1442.
Chen, T. C. (2002a). A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15, 2359-2376.
Chen, T. C., Yen, M. C., Huang, W. R., & Gallus Jr., W. A. (2002b). An East-Asian cold surge: Case study. Mon. Wea. Rev., 130, 2271-2291.
Chen, T. C., Wang, S. Y., Huang, W. R., & Yen, M. C. (2004). Variation of the East Asian summer monsoon rainfall. J. Climate, 17, 744-762.
Chen, T. F., Chang, K. H., & Tsai, C. Y. (2014b). Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmospheric Environment, 89, 1-9.
Chen, T. F., Chang, K. H., & Lee, C. H. (2019). Simulation and analysis of causes of a haze episode by combining CMAQ-IPR and brute force source sensitivity method. Atmospheric Environment, 218, 117006.
Cheng, F. Y., Chin, S. C., & Liu, T. H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmospheric Environment 54, 714-727.
Cheng, F. Y., Jian, S. P., Yang, Z. M., Tsuang, B. J., & Yen, M. C. (2015). Impact of regional climate changes on meteorological characteristics and their subsequent effect on ozone dispersion in Taiwan. Atmospheric Environment. V103, P66-81.
Chien, L. C., Yang, C. H., & Yu, H. L. (2012). Estimated effects of Asian dust storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 120 (8), 1215–1220. https://doi.org/10.1289/ehp.1104417.
Chuang, M. T., Fu, J. S., Jang, C. J., Chan, C. C., Ni, P. C., & Lee, C. T. (2008). Simulation of long-range transport aerosols from the Asian continent to Taiwan by a southward Asian high-pressure system. Sci. Total Environ. 406, 168–179.
Chuang, M. T., Fu, J. S., Lin, N. H., Lee, C. T., Gao, Y., Wang, S. H., Sheu, G. R., Hsiao, T. C., Wang, J. L., Yen, M. C., Lin, T. H., Thongboonchoo, N., & Chen, W. C. (2015). Simulating transport and chemical evolution of of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha Experiment. Atmospheric Environment, 112, 294-305.
Chuang, M. T., Lee, C. T., Chou, C. C. K., Engling, G., Chang, S. Y., Chang, S. C., Shue, G. R., Lin, N. H., Sopajaree, K., Chang, Y. J., & Hong, G. J. (2016). Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan–Implication of aerosol aging during long-range transport. Atmospheric environment, 137, 101-112.
Chuang, M. T., Chou, C. C. K., Lin, N. H., Takami, A., Hsiao, T. C., Lin, T. H., Fu, J. S., Pani, S. K., Lu, Y. R., & Yang, T. Y. (2017). A simulation study on PM2.5 sources and meteorological characteristics at the northern tip of Taiwan in the early stage of the Asian haze period. Aerosol Air Qual. Res. 17(12), 3166–3178. https://doi.org/10.4209/aaqr.2017.05.0185.
Chuang, M. T., Ooi, M. C. G., Lin, N. H., Fu, J. S., Lee, C. T., Wang, S. H., Yen, M. C, Kong, S. S. K., & Huang, W. S. (2020). Study on the impact of three Asian industrial regions on PM2.5 in Taiwan and the process analysis during transport. Atmospheric Chemistry and Physics, 20(23), 14947-14967.
Chuang, M. T., Chou, C. C., Hsiao, T. C., Lin, K. Y., Lin, N. H., Lin, W. Y., Wang, S. H., Pani, S. K., & Lee, C. T. (2021). Analyzing the increasing importance of nitrate in Taiwan from long-term trend of measurements. Atmospheric Environment, 267, 118749.
Cole, M. A., Elliott, R. J. R., & Liu, B. (2020), The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach, Environ Resour Econ (Dordr), 1-28, doi:10.1007/s10640-020-00483-4.
Cotton, W. R., Pielke Sr, R., Walko, R., Liston, G., Tremback, C., Jiang, H., McAnelly, R., Harrington, J., Nicholls, M., & Carrio, G. (2003). RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics 82, 5-29.
Cressman, G. P. (1959). An operational objective analysis system. Monthly Weather Review, 87(10), 367-374.
Darmenova, K., Sokolik, I. N., Shao, Y., Marticorena, B., & Bergametti, G. (2009). Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia. Journal of Geophysical Research: Atmospheres, 114(D14).
Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., & Venkatram, A. (2010). A framework for evaluating regional-scale numerical photochemical modeling systems. Environ Fluid Mech, 10:471-489.
Dong, X., Fu, J., Huang, K., Tong, D., & Zhuang, G. (2016). Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia. Atmospheric Chemistry and Physics, 16(13), 8157–8180.
Dong, X., Fu, J. S., Huang, K., Zhu, Q., & Tipton, M. (2019). Regional climate effects of biomass burning and dust in East Asia: evidence from modeling and observation. Geophysical Research Letters, 46(20), 11490-11499.
Dudhia, J. (1993). A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review 121, 1493-1513.
Foroutan, H., Young, J., Napelenok, S., Ran, L., Appel, K., Gilliam, R., & Pleim, J. (2017). Journal of Advances in Modeling Earth Systems. Journal of Advances in Modeling Earth Systems, 9, 585– 606.
Fu, G., Xu, W., Yang, R., Li, J., & Zhao, C. (2014). The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmos. Chem. Phys. 14, 11949–11958.
Fu, J. S., Hsu, N. C., Gao, Y., Huang, K., Li, C., Lin, N. H., &Tsay, S. C. (2012). Evaluating the influences of biomass burning during 2006 BASE-ASIA: A regional chemical transport modeling. Atmospheric Chemistry and Physics, 12(9), 3837–3855. https://doi.org/10.5194/acp-12-3837-2012.
Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J. D., & Hao, J. M. (2014). Source, transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011. Atmospheric Chemistry and Physics, 14(3), 1239-1254.
Fuelberg, H. E., Kiley, C. M., Hannan, J. R., Westberg, D. J., Avery, M. A., & Newwell, R. E. (2003). Atmospheric transport during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research 108(D20), 8782, doi:10.1029/2002JD003092.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment 39, 6957-6975.
Grenier, P., Elliott, J. E., Drouillard, K. G., Guigueno, M. F., Muir, D., Shaw, D. P., Wayland, M., & Elliott, K. H. (2020). Long-range transport of legacy organic pollutants affects alpine fish eaten by ospreys in western Canada. Sci. Total Environ. 712, 135889. https://doi.org/10.1016/j.scitotenv.2019.135889.
Griffith, S. M., Huang, W. S., Lin, C. C., Chen, Y. C., Chang, K. E., Lin, T. H., Wang, S. H., & Lin, N. H. (2020). Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Science of The Total Environment, 741, 140214.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5 (6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012.
He, G., Pan, Y., & Tanaka, T. (2020). The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustainability 3, 1005–1011. https://doi.org/10.1038/s41893-020-0581-y
He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., & Chen, G. (2012). Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics, 12(3), 1377-1395.
Hsu, C.H., & Cheng, F.Y. (2019). Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res. 19(5), 1139–1151. https://doi.org/10.4209/aaqr.2018.09.0348.
Hu, B., Zhao, X., Liu, H., Liu, Z., Song, T., Wang, Y., Tang, L., Xia, X., Tang, G., Ji, D., Wen, T., Wang, L., Sun, Y., & Xin, J. (2017). Quantification of the impact of aerosol on broadband solar radiation in North China. Sci. Rep. 7, 44851. https://doi.org/10.1038/screp44851.
Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin, Y., & Fu, J. S. (2010). Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. Journal of Geophysical Research: Atmospheres, 115(D7).
Huang, K., Zhang, X., & Lin, Y. (2015). The “APEC Blue” phenomenon: regional emission control effects observed from space. Atmos. Res. 164–165, 65–75. https://doi.org/10.1016/j.atmosres.2015.04.018.
Huang, K., Fu, J. S., Lin, N. H., Wang, S. H., Dong, X., & Wang, G. (2019). Superposition of Gobi dust and Southeast Asian biomass burning: the effect of multi‐source long‐range transport on aerosol optical properties and regional meteorology modification. Journal of Geophysical Research: Atmospheres.
Huang, W. S., Griffith, S. M., Lin, Y. C., Chen, Y. C., Lee, C. T., Chou, C. C. K., Chuang, M. T., Wang, S. H., & Lin, N. H. (2021). Satellite-based Emission Inventory Adjustments Improve Simulations of Long-range Transport Events. Aerosol and Air Quality Research, 21, 210121.
Huang, X., Qiu, R., Chan, C. K., & Kant, P. R. (2011). Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]= 1.5. Atmospheric Research, 99(3-4), 488-495.
Hung, W. T., Lu, C. H. (Sarah), Wang, S. H., Chen, S. P., Tsai, F., & Chou, C. C. K. (2019). Investigation of long-range transported PM2.5 events over Northern Taiwan during 2005–2015 winter seasons. Atmos. Environ. 217 (August), 116920. https://doi.org/10.1016/j.atmosenv.2019.116920.
Ishida, K., Kavvas, M. L., & Jang, S. (2015). Comparison of performance on watershed-scale precipitation between WRF and MM5. In World Environmental and Water Resources Congress 2015 (pp. 989-993).
Itahashi, S., Uno, I., Osada, K., Kamiguchi, Y., Yamamoto, S., Tamura, K.,Wang, Z., Kurosaki, Y., & Kanaya, Y. (2017). Nitrate transboundary heavy pollution over East Asia in winter. Atmos. Chem. Phys. 17(6), 3823–3843. https://doi.org/10.5194/acp-17-3823-2017.
Kaneyasu, N., Yamamoto, S., Sato, K., Takami, A., Hayashi, M., Hara, K., Kawamoto, K., Okuda, T., & Hatakeyama, S. (2014). Impact of long-range transport of aerosols on the PM2.5 composition at a major metropolitan area in the northern Kyushu area of Japan. Atmos. Environ. 97 (January 2013), 416–425. https://doi.org/10.1016/j.atmosenv.2014.01.029.
Kagawa, J. (1985). Evaluation of biological significance of nitrogen oxides exposure. The Tokai journal of experimental and clinical medicine 10, 348-353.
Kim, C. H., Lee, H. J., Kang, J. E., Jo, H. Y., Park, S. Y., Jo, Y. J., Lee, J. J., Yang, G. H., Park, T., & Lee, T. (2018). Meteorological overview and signatures of long-range transport processes during the MAPS-Seoul 2015 campaign. Aerosol Air Qual. Res. 18(9), 2173–2184. https://doi.org/10.4209/aaqr.2017.10.0398.
Kishcha, P., Wang, S. H., Lin, N. H., Silva, A. da, Lin, T. H., Lin, P. H., Liu, G. R., Starobinets, B., & Alpert, P. (2018). Differentiating between local and remote pollution over Taiwan. Aerosol Air Qual. Res. 18(7), 1788–1798. https://doi.org/10.4209/aaqr.2017.10.0378.
Kong, S. S. K., Fu, J. S., Dong, X., Chuang, M. T., Ooi, M. C. G., Huang, W. S., Griffith, S. M., Pani, S. K., Lin, N. H. (2021). Sensitivity analysis of the dust emission treatment in CMAQv5.2.1 and its application to long-range transport over East Asia. Atmospheric Environment, 118441.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., & Streets, D. G. (2016). Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 16, 4605–4629. https://doi.org/10.5194/acp-16-4605-2016.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 369, 702–706. https://doi.org/10.1126/science.abb7431
Lee, K., Kim, Y. J., Kang, C. H., Kim, J. S., Chang, L. S., & Park, K. (2015). Chemical characteristics of long-range-transported fine particulate matter at Gosan, Jeju island, in the spring and fall of 2008, 2009, 2011, and 2012. J. Air Waste Manag. Assoc. 65(4), 445–454. https://doi.org/10.1080/10962247.2014.1001883.
Lee, K., Chandra, I., Seto, T., Inomata, Y., Hayashi, M., Takami, A., Yoshino, A., & Otani, Y. (2019). Aerial observation of atmospheric nanoparticles on Fukue Island, Japan. Aerosol Air Qual. Res. 19(5), 981–994. https://doi.org/10.4209/aaqr.2018.03.0077.
Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., & Zheng, B. (2017). MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17(2), 935–963. https://doi.org/10.5194/acp-17-935-2017.
Li, H.,Wang, D., Cui, L., Gao, Y., Huo, J.,Wang, X., Zhang, Z., Tan, Y., Huang, Y., Cao, J., Chow, J. C., Lee, S. C., & Fu, Q. (2019). Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in shanghai for the 2016 G20 summit. Sci. Total Environ. 648, 1121–1129. https://doi.org/10.1016/j.scitotenv.2018.08.219.
Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi, L., Li, R., Azari, M., Wang, Y., Zhang, X., Liu, Z., Zhu, Y., Zhang, K., Xue, S., Ooi, M.C.G., Zhang, D., & Chan, A. (2020). Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: an insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 732. https://doi.org/10.1016/j.scitotenv.2020.139282.
Lin, C. Y., Chou, C. C., Wang, Z., Lung, S. C., Lee, C. T., Yuan, C. S., Chen, W. N., Chang, S. Y., Hsu, S. C., Chen, W. C., & Liu, S. C. (2012a). Impact of different transport mechanisms of Asian dust and anthropogenic pollutants to Taiwan. Atmospheric environment, 60, 403-418.
Lin, C. Y., Sheng, Y. F., Chen, W. N., Wang, Z., Kuo, C. H., Chen, W. C., & Yang, T. (2012b). The impact of channel effect on Asian dust transport dynamics: a case in southeastern Asia. Atmospheric Chemistry and Physics, 12(1), 271-285.
Lin, C. Y., Zhao, C., Liu, X., Lin, N. H., & Chen, W. N. (2014). Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology, 66(1), 23733.
Lin, C. Y., Lee, Y. H., Kuo, C. Y., Chen, W. C., Sheng, Y. F., & Su, C. J. (2018). Impact of river-dust events on air quality of western Taiwan during winter monsoon: Observed evidence and model simulation. Atmospheric Environment, 192, 160-172.
Liu, C., Guo, J., Zhang, B., Zhang, H., Guan, P., & Xu, R. (2021). A Reliability Assessment of the NCEP/FNL Reanalysis Data in Depicting Key Meteorological Factors on Clean Days and Polluted Days in Beijing. Atmosphere, 12, 481.
Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J., Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A. S., & Silva, A. M. D. (2018). A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions. Atmospheric Chemistry and Physics, 18(22), 16571-16586.
Loftus, C., Yost, M., Sampson, P., Arias, G., Torres, E., Vasquez, V. B., Bhatti, P., & Karr, C. (2015). Regional PM2.5 and asthma morbidity in an agricultural community: A panel study. Environmental research 136, 505-512.
Matsuda, K., Fujimura, Y., Hayashi, K., Takahashi, A., & Nakaya, K. (2010). Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmos. Environ. 44(36), 4582–4587. https://doi.org/10.1016/j.atmosenv.2010.08.015.
Marlier, M. E., J. Xing, Y. Zhu, & S. Wang (2020), Impacts of COVID-19 response actions on air quality in China, Environmental Research Communications, 2(7), doi:10.1088/2515-7620/aba425.
Merrill, J. T., Newell, R. E., & Bachmeier, A. S. (1997). A meteorological overview for the Pacific Exploratory Mission-West Phase B. Journal of Geophysical Research, 102, 28241-28253.
Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 728, 138820. https://doi.org/10.1016/j.scitotenv.2020.138820
Na, K., Sawant, A.A., Song, C., & Cocker, D.R. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos. Environ. 38, 1345–1355.
Ohura, T., Noda, T., Amagai, T., & Fusaya, M. (2005). Prediction of personal exposure to PM2.5 and carcinogenic polycyclic aromatic hydrocarbons by their concentrations in residential microenvironments. Environmental Science & Technology 39, 5592-5599.
Ooi, M. C., Chuang, M. T., Fu, J. S., Kong, S. S., Huang, W. S., Wang, S. H., Pimonsree, S., Chan, A., Pani, S. K., & Lin, N. H. (2021). Improving prediction of trans-boundary biomass burning plume dispersion: From northern peninsular Southeast Asia to downwind western north Pacific Ocean. Atmospheric Chemistry and Physics, 21(16), 12521-12541.
Pani, S. K., Lin, N. H., & RavindraBabu, S. (2020). Association of COVID-19 pandemic with meteorological parameters over Singapore. Sci. Total Environ. 740, 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287, 1132-1141.
Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71-77.
Qiu, X., Duan, L., Chai, F., Wang, S., Yu, Q., & Wang, S. (2016). Deriving high-resolution emission inventory of open biomass burning in China based on satellite observations. Environmental science & technology, 50(21), 11779-11786.
Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., Buringh, E., Ten Brink, H. M., Lutz, M., Bruckmann, P., Straehl, P., & Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38(38), 6547–6555. https://doi.org/10.1016/j.atmosenv.2004.08.037.
Schwartz, J., Dockery, D. W., & Neas, L. M. (1996). Is daily mortality associated specifically with fine particles? Journal of the Air & Waste Management Association 46, 927-939.
Seinfeld, J.H., & Pandis, S.N. (2006). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons, Inc., New York.
Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., & Zhang, Q. (2020). Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmospheric Chemistry and Physics, 20(3), 1483-1495.
Shairsingh, K. K., Jeong, C. H., & Evans, G. J. (2019). Transboundary and traffic influences on air pollution across two Caribbean islands. Sci. Total Environ. 653, 1105–1110. https://doi.org/10.1016/j.scitotenv.2018.11.034.
Shi, X., & Brasseur, G. P. (2020), The Response in Air Quality to the Reduction of Chinese Economic Activities during the COVID-19 Outbreak, Geophys Res Lett, e2020GL088070, doi:10.1029/2020GL088070.
Shimada, K., Yang, X., Araki, Y., Yoshino, A., Takami, A., Chen, X., Meng, F., & Hatakeyama, S. (2018). Concentrations of metallic elements in long-range-transported aerosols measured simultaneously at three coastal sites in China and Japan. J. Atmos. Chem. 75(2), 123–139. https://doi.org/10.1007/s10874-017-9366-8.
Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227, 3465-3485.
Song, S., Lee, K., Lee, Y. M., Lee, J. H., Lee, S. I., Yu, S. D., & Paek, D. (2011). Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environmental research 111, 394-399.
Sun, Y., Wang, Z., Wild, O., Xu, W., Chen, C., Fu, P., Du, W., Zhou, L., Zhang, Q., Han, T., Wang, Q., Pan, X., Zheng, H., Li, J., Guo, X., Liu, J., & Worsnop, D. R. (2016). “APEC Blue”: secondary aerosol reductions from emission controls in Beijing. Scientific reports, 6(1), 1-9.
Tan, P. H., Chou, C., & Chou, C. C. K. (2013). Impact of urbanization on the air pollution “holiday effect” in Taiwan. Atmos. Environ. 70, 361–375. https://doi.org/10.1016/j.atmosenv.2013.01.008.
Ueda, S., Nakayama, T., Taketani, F., Adachi, K., Matsuki, A., Iwamoto, Y., Sadanaga, Y., & Matsumi, Y. (2016). Light absorption and morphological properties of sootcontaining aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmos. Chem. Phys. 16(4), 2525–2541. https://doi.org/10.5194/acp-16-2525-2016.
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global ai pollution declines. Proc. Natl. Acad. Sci. U.S.A. 117, 18984–18990. https://doi.org/10.1073/pnas.2006853117
Vukovich, J., & Pierce, T. (2002). The implementation of BEIS3 within the SMOKE modeling framework. Proceedings of the 510 11th International Emissions Inventory Conference, Atlanta, Georgia, April 15–18, 2002.
Yang, Y., Liao, H., & Lou, S. (2016). Increase in winter haze over eastern China in recent decades: roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos. 121, 13050–13065. https://doi.org/10.1002/2016JD025136.
Wang, C., Huang, X. F., Zhu, Q., Cao, L. M., Zhang, B., & He, L. Y. (2017). Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival. Atmos. Chem. Phys. 17, 9103–9114. https://doi.org/10.5194/acp-17-9103-2017.
Wang, S. H., Hung, W. T., Chang, S. C., & Yen, M. C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmos. Environ. 126, 76–86.
Wang, P., Chen, K., Zhu, S., Wang. P., & Zhang, H. (2020a), Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour Conserv Recycl, 158, 104814, doi:10.1016/j.resconrec.2020.104814.
Wang, X., & R. Zhang (2020), How Did Air Pollution Change during the COVID-19 Outbreak in China?, Bulletin of the American Meteorological Society, 101(10), E1645-E1652, doi:10.1175/bams-d-20-0102.1.
Wang, Y., Yuan, Y., Wang, Q., Liu, C., Zhi, Q., & Cao, J. (2020b), Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions, Sci Total Environ, 731, 139133, doi:10.1016/j.scitotenv.2020.139133.
Wang, Y., Hao, J., McElroy, M. B., Munger, J. W., Ma, H., Chen, D., & Nielsen, C.P. (2009). Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions. Atmos. Chem. Phys. 9(14), 5237–5251. https://doi.org/10.5194/acp-9-5237-2009.
Wang, Y., Zhang, Y., Schauer, J. J., de Foy, B., Guo, B., & Zhang, Y. (2016). Relative impact of emissions controls and meteorology on air pollution mitigation associated with the Asia-Pacific Economic Cooperation (APEC) conference in Beijing, China. Sci. Total Environ. 571, 1467–1476. https://doi.org/10.1016/j.scitotenv.2016.06.215.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451-14510.
Witte, J. C., Schoeberl, M. R., Douglass, A. R., Gleason, J. F., Krotkov, N. A., Gille, J. C., Pickering, K. E., & Livesey, N. (2009). Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics. Geophys. Res. Lett. 36(17), 1–6. https://doi.org/10.1029/2009GL039236.
Xu, K., Cui, K., Young, L. H., Hsieh, Y. K., Wang, Y. F., Zhang, J., & Wan, S. (2020). Impact of the COVID-19 event on air quality in central China. Aerosol and Air Quality Research, 20(5), 915-929.
Yang, Y., Zhao, Y., Zhang, L., Zhang, J., Huang, X., Zhao, X., Zhang, Y., Xi, M., & Lu, Y. (2021). Improvement of the satellite-derived NOx emissions on air quality modeling and its effect on ozone and secondary inorganic aerosol formation in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 21(2), 1191-1209.
Yen, M. C., & Chen, T. C. (2000). Seasonal variation of rainfall in Taiwan. Inter. J. Climatol., 20, 803-809.
Yen, M. C., & Chen, T. C. (2002). A revisit of the tropical-midlatitude interaction in East-Asian caused by cold surges. J. Meteor. Soc. Japan, 80, 1115-1128.
Zhang, M., Pu, Y., Zhang, R., & Han, Z. (2006). Simulation of sulfur transport and transformation in East Asia with a comprehensive chemical transport model. Environmental Modelling & Software 21, 812-820.
Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., & Zhao, D. (2015). Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total. Environ. 502, 578–584.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., & Baklanov, A. (2012). Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment, 60, 632-655.
Zhao, Y., Xia, Y., & Zhou, Y. (2018). Assessment of a high-resolution NOX emission inventory using satellite observations: A case study of southern Jiangsu, China. Atmospheric Environment, 190, 135-145.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., & Zhang, Q. (2018). Trends in China′s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19), 14095-14111.
Zhong, M., Saikawa, E., Liu, Y., Naik, V., Horowitz, L. W., Takigawa, M., Zhao, Y., N. H. Lin & Stone, E. A. (2016). Air quality modeling with WRF-Chem v3. 5 in East Asia: sensitivity to emissions and evaluation of simulated air quality. Geoscientific Model Development, 9(3), 1201-1218.
指導教授 林能暉(Neng-Huei Lin) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明