參考文獻 |
Anand, N., Satheesh, S. K., & Moorthy, K. K. (2017). Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols. Optics Letters, 42(14), 2714–2717. https://doi.org/10.1364/OL.42.002714
Basu, S., Burchett, L. R., Fiorino, S. T., & McCrae, J. E. (2016). Comparison of the path-weighted Cn2 derived from time-lapse imagery and weather radar. 2016 IEEE Aerospace Conference, 1–11. https://doi.org/10.1109/AERO.2016.7500707
Bonin, T. A., Goines, D. C., Scott, A. K., Wainwright, C. E., Gibbs, J. A., & Chilson, P. B. (2015). Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar. Boundary-Layer Meteorology, 155(3), 417–434. https://doi.org/10.1007/s10546-015-0009-9
de Wolf, D. A. (1979). Optical propagation through turbulent air. Optics & Laser Technology, 11(1), 29–36. https://doi.org/10.1016/0030-3992(79)90063-X
Diskin, Y., Whiteley, M., Grose, M., Jackovitz, K., Drye, R., Hampshire, B., Owens, M., Smith, E., Magee, E., Kalensky, M., Jumper, E., Gordeyev, S., & Archibald, A. (2021). Aircraft to Ground Profiling: Turbulence Measurements and Optical System Performance Modeling. AIAA Journal, 59(11), 4610–4625. https://doi.org/10.2514/1.J060580
Fairall, C. W. (1991). The Humidity and Temperature Sensitivity of Clear-Air Radars in the Convective Boundary Layer. Journal of Applied Meteorology and Climatology, 30(8), 1064–1074. https://doi.org/10.1175/1520-0450(1991)030<1064:THATSO>2.0.CO;2
He, P., & Basu, S. (2016). Extending a surface-layer Cn2 model for strongly stratified conditions utilizing a numerically generated turbulence dataset. Optics Express, 24(9), 9574–9582. https://doi.org/10.1364/OE.24.009574
Introduction to Tropical Meteorology, Ch. 3: Global Circulation: 3.1 General Principles of Atmospheric Motion 3.1.4 Scale Analysis of the Tropics. Retrieved May 7, 2022, from http://www.chanthaburi.buu.ac.th/~wirote/met/tropical/textbook_2nd_edition/navmenu.php_tab_4_page_1.5.0.htm
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov, R. D., Rantala, P., Vesala, T., & Wood, C. R. (2018). Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmospheric Measurement Techniques, 11(10), 5421–5438. https://doi.org/10.5194/amt-11-5421-2018
Kolmogorov, A. (1941). The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30, 301–305.
Lundquist, J. K., Wilczak, J. M., Ashton, R., Bianco, L., Brewer, W. A., Choukulkar, A., Clifton, A., Debnath, M., Delgado, R., Friedrich, K., Gunter, S., Hamidi, A., Iungo, G. V., Kaushik, A., Kosović, B., Langan, P., Lass, A., Lavin, E., Lee, J. C.-Y., … Worsnop, R. (2017). Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign. Bulletin of the American Meteorological Society, 98(2), 289–314. https://doi.org/10.1175/BAMS-D-15-00151.1
Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151(163), e187.Melnikov, V. M., Doviak, R. J., Zrnić, D. S., & Stensrud, D. J. (2013). Structures of Bragg Scatter Observed with the Polarimetric WSR-88D. Journal of Atmospheric and Oceanic Technology, 30(7), 1253–1258. https://doi.org/10.1175/JTECH-D-12-00210.1
Mölders, N., Tran, H. N. Q., Quinn, P., Sassen, K., Shaw, G. E., & Kramm, G. (2011). Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data. Atmospheric Pollution Research, 2(3), 283–299. https://doi.org/10.5094/APR.2011.035
Newsom, R. K., Brewer, W. A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., & Lundquist, J. K. (2017). Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmospheric Measurement Techniques, 10(3), 1229–1240. https://doi.org/10.5194/amt-10-1229-2017
Qing, C., Wu, X., Li, X., Tian, Q., Liu, D., Rao, R., & Zhu, W. (2017). Simulating the Refractive Index Structure Constant C_n^2 in the Surface Layer at Antarctica with a Mesoscale Model. The Astronomical Journal, 155(1), 37. https://doi.org/10.3847/1538-3881/aa9e8f
Röttger, J. (1980). Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigations. Pure and Applied Geophysics, 118(1), 494–527. https://doi.org/10.1007/BF01586465
Shao, S., Qin, F., Liu, Q., Xu, M., & Cheng, X. (2020). Turbulent Structure Function Analysis Using Wireless Micro-Thermometer. IEEE Access, 8, 123929–123937. https://doi.org/10.1109/ACCESS.2020.3002103
Su, S.-H., Chang, Y.-H., Liu, C.-H., Chen, W.-T., Chang, W.-Y., Chen, J.-P., Chen, W.-N., Chung, K.-S., Hou, J.-P., Hsieh, M.-K., Jang, Y.-S., Kuo, H.-C., Lee, Y.-C., Lin, P.-L., Lin, P.-Y., Lin, P.-H., Lo, M.-H., Wang, S.-H., Wu, C.-M., … Yang, M.-J. (n.d.). Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4271
van den Kroonenberg, A. C., Martin, S., Beyrich, F., & Bange, J. (2012). Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle. Boundary-Layer Meteorology, 142(1), 55–77. https://doi.org/10.1007/s10546-011-9662-9
Wainwright, C. E., Bonin, T. A., Chilson, P. B., Gibbs, J. A., Fedorovich, E., & Palmer, R. D. (2015). Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation. Boundary-Layer Meteorology, 155(2), 189–208. https://doi.org/10.1007/s10546-014-0001-9
Wang, L., Liu, J., Gao, Z., Li, Y., Huang, M., Fan, S., Zhang, X., Yang, Y., Miao, S., Zou, H., Sun, Y., Chen, Y., & Yang, T. (2019). Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes. Atmospheric Chemistry and Physics, 19(10), 6949–6967. https://doi.org/10.5194/acp-19-6949-2019
Xiaoqing, W., Qiguo, T., Peng, J., Bo, C., Chun, Q., Jun, C., Xinmiao, J., & Hongyan, Z. (2015). A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer. 26(4), 6.
Yaacob, M. R., Schlander, R. K., Buchhave, P., & Velte, C. M. (2018). Experimental Evaluation of Kolmogorov’s -5/3 and 2/3 Power Laws in the Developing Turbulent Round Jet. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 14–21.
樺澤實,1950:氣象通訊,第五卷,第四、五、六期。
王聖翔,2021:台灣南部弱綜觀海陸風無人機觀測。交通部氣象局。
陳盈曄、林沛練,2000:宜蘭地區秋冬季降雨特性之研究,國立中央大學大氣科學系碩士論文。
劉清煌、郭鴻基、蘇世顥、陳維婷、尤虹叡、李育棋,2020:宜蘭強降雨觀測實驗。天氣分析與預報研討會。
蘇世顥、劉清煌,2020:2020年宜蘭劇烈降雨實驗(2020YESR)簡介。氣象學會62期會勘專題。
AFASI圖台,2022。農林航空測量所。 |