參考文獻 |
1. Aydan, Ö., Akagi, T., and Kawamoto, T. (1993). The squeezing potential of rocks around tunnels; theory and prediction. Rock Mech Rock Eng, 26(2), 137-163. doi: https://doi.org/10.1007/BF0103265
2. Baecher, G., Lanney, N., and Einstein, H. (1977). Statistical description of rock properties and sampling. Paper presented at the The 18th US Symposium on Rock Mechanics (USRMS).
3. Baecher, G.B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 15(2), 329-348.
4. Bieniawski, Z. (1974). Geomechanics classification of rock masses and its application in tunneling. Paper presented at the Proc. 3rd Int. Congress on Rock Mechanics.
5. Bieniawski, Z. (1989). Engineering rock mass classifications: John Wiley & Sons.
6. Blümling, P., Bernier, F., Lebon, P., and Martin, C.D. (2007). The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 588-599. doi:https://doi.org/10.1016/j.pce.2006.04.034
7. Bossart, P., Meier, P.M., Moeri, A., Trick, T., and Mayor, J.-C. (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Engineering Geology, 66(1-2), 19-38. doi:https://doi.org/10.1016/S0013-7952(01)00140-5
8. Bossart, P., Trick, T., Meier, P.M., and Mayor, J.-C. (2004). Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Applied clay science, 26(1-4), 429-448. doi:https://doi.org/10.1016/j.clay.2003.12.018
9. Bossart, P., and Wermeille, S. (2003). The stress field in the Mont Terri region data compilation. Reports of the Federal Office for Water and Geology, 65-92.
10. Cao, R., Cao, P., Lin, H., Ma, G., Fan, X., and Xiong, X. (2018). Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng, 18, 198-214. doi:https://doi.org/10.1016/j.acme.2017.06.010
11. Cundall, P., PA, C., and ODL, S. (1982). Numerical experiments on granular assemblies; measurements and observations.
12. Dershowitz, W., and Einstein, H. (1988). Characterizing rock joint geometry with joint system models. Rock mechanics and rock engineering, 21(1), 21-51.
13. Diambra, A., Festugato, L., Ibraim, E., da Silva, A.P., and Consoli, N. (2018). Modelling tensile/compressive strength ratio of artificially cemented clean sand. Soils and foundations, 58(1), 199-211.
14. Diederichs, M., and Kaiser, P. (1999). Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited. Int J Rock Mech Min Sci, 36(1), 97-117. doi:https://doi.org/10.1016/S0148-9062(98)00180-6
15. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010). Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. International Journal of Rock Mechanics and Mining Sciences, 47(6), 915-926.
16. Farahmand, K., Vazaios, I., Diederichs, M., and Vlachopoulos, N. (2018). Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach. Computers and Geotechnics, 95, 162-179.
17. Fortsakis, P., Nikas, K., Marinos, V., and Marinos, P. (2012). Anisotropic behaviour of stratified rock masses in tunnelling. Eng Geol, 141, 74-83. doi:https://doi.org/10.1016/j.enggeo.2012.05.001
18. FracMan. (2011). Golder Associates Inc. FracMan7: User documentation (Version 7): Atlanta, Golder Associates Inc.
19. Ghazvinian, A., Vaneghi, R.G., Hadei, M., and Azinfar, M. (2013). Shear behavior of inherently anisotropic rocks. International Journal of Rock Mechanics & Mining Sciences, 61, 96-110.
20. Gong, F., Wu, W., Li, T., and Si, X. (2019). Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states. International Journal of Rock Mechanics & Mining Sciences, 122, 104081.
21. Goodman, R.E. (1989). Introduction to rock mechanics (Vol. 2): Wiley New York.
22. Goodman, R.E., and Shi, G.-h. (1985). Block theory and its application to rock engineering.
23. Harthong, B., Scholtès, L., and Donzé, F.-V. (2012). Strength characterization of rock masses, using a coupled DEM–DFN model. Geophysical Journal International, 191(2), 467-480.
24. Hoek, E., and Brown, E. (1980). Underground excavations in rock. Institution of Mining and Metallurgy: CRC Press.
25. Hoerger, S., and Young, D. (1990). Probabilistic prediction of keyblock occurrences. Paper presented at the The 31st US Symposium on Rock Mechanics (USRMS).
26. Itasca. (2014). Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions) (Version 5.0): Minneapolis, MN: ICG.
27. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011). The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci, 48(2), 219-244. doi:https://doi.org/10.1016/j.ijrmms.2010.11.014
28. Jaeger, J. (1960). Shear failure of anistropic rocks. Geological Magazine, 97(1), 65-72.
29. Jaeger, J., and Cook, N. (1979). Fundamentals of rock mechanics (Vol. 3rd ed): London: Chapman & Hall.
30. Jia, P., and Tang, C. (2008). Numerical study on failure mechanism of tunnel in jointed rock mass. Tunn Undergr Sp Tech, 23(5), 500-507. doi:https://doi.org/10.1016/j.tust.2007.09.001
31. Jiang, Y., Li, B., and Yamashita, Y. (2009). Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method. Int J Rock Mech Min Sci, 46(1), 97-106. doi:https://doi.org/10.1016/j.ijrmms.2008.05.004
32. Jiang, Y., Tanabashi, Y., Li, B., and Xiao, J. (2006). Influence of geometrical distribution of rock joints on deformational behavior of underground opening. Tunn Undergr Sp Tech, 21(5), 485-491. doi:https://doi.org/10.1016/j.tust.2005.10.004
33. Karampinos, E., Hadjigeorgiou, J., Hazzard, J., and Turcotte, P. (2015). Discrete element modelling of the buckling phenomenon in deep hard rock mines. International Journal of Rock Mechanics & Mining Sciences, 80, 346-356.
34. Kirsch, G. (1898). Theory of elasticity and application in strength of materials. Zeitschrift des Vereins Deutscher Ingenieure, 42(29), 797-807.
35. Klopčič, J., and Logar, J. (2014). Effect of relative orientation of anisotropy planes to tunnel axis on the magnitude of tunnelling displacements. Int J Rock Mech Min Sci, 71, 235-248. doi:https://doi.org/10.1016/j.ijrmms.2014.02.024
36. Labiouse, V., and Vietor, T. (2014). Laboratory and in situ simulation tests of the excavation damaged zone around galleries in Opalinus Clay. Rock Mech Rock Eng., 47(1), 57-70. doi:http://dx.doi.org/10.1007/s00603-013-0389-4
37. Lambert, C., and Coll, C. (2014). Discrete modeling of rock joints with a smooth-joint contact model. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 1-12.
38. Lee, Y.-K., and Pietruszczak, S. (2008). Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. International Journal of Rock Mechanics & Mining Sciences, 45(4), 513-523.
39. Lee, Y.-K., and Pietruszczak, S. (2015). Tensile failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci, 79, 205-215.
40. Lei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput Geotech, 85, 151-176. doi:https://doi.org/10.1016/j.compgeo.2016.12.024
41. Lin, Q., Cao, P., Meng, J., Cao, R., and Zhao, Z. (2020). Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling. Theor Appl Fract Mech, 109, 102692. doi:https://doi.org/10.1016/j.tafmec.2020.102692
42. Lisjak, A., Garitte, B., Grasselli, G., Müller, H., and Vietor, T. (2015). The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): short-term rock mass response and FDEM numerical analysis. Tunn Undergr Sp Tech, 45, 227-248. doi:https://doi.org/10.1016/j.tust.2014.09.014
43. Long, J.C., Remer, J., Wilson, C., and Witherspoon, P. (1982). Porous media equivalents for networks of discontinuous fractures. Water resources research, 18(3), 645-658.
44. Ma, Y., and Huang, H. (2018). A displacement-softening contact model for discrete element modeling of quasi-brittle materials. Int J Rock Mech Min Sci, 104, 9-19.
45. Marschall, P., Distinguin, M., Shao, H., Bossart, P., Enachescu, C., and Trick, T. (2006). Creation and evolution of damage zones around a microtunnel in a claystone formation of the Swiss Jura Mountains. Paper presented at the SPE International Symposium and Exhibition on Formation Damage Control.
46. Martin, C., Kaiser, P., and McCreath, D. (1999). Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Canadian Geotechnical Journal, 36(1), 136-151.
47. Mercier-Langevin, F., and Wilson, D. (2013). Lapa Mine–ground control practices in extreme squeezing ground. Paper presented at the Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction.
48. Nussbaum, C., Bossart, P., Amann, F., and Aubourg, C. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104(2), 187.
49. Obert, L., and Duvall, W.I. 1967. Rock mechanics and the design of structures in rock. Retrieved from
50. Ortlepp, W., O′Ferrall, R.M., and Wilson, J.W. (1976). Support methods in tunnels.
51. Ortlepp, W., and Stacey, T. (1994). Rockburst mechanisms in tunnels and shafts. Tunn Undergr Sp Tech, 9(1), 59-65.
52. Park, B., and Min, K.-B. (2015). Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min Sci, 76, 243-255.
53. Park, B., Min, K.-B., Thompson, N., and Horsrud, P. (2018). Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. International Journal of Rock Mechanics & Mining Sciences, 110, 120-132.
54. Pierce, M., Cundall, P., Potyondy, D., and Ivars, D.M. (2007). A synthetic rock mass model for jointed rock. Paper presented at the 1st Canada-US Rock Mechanics Symposium.
55. Plackett, R.L., and Burman, J.P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305-325.
56. Potvin, Y., and Hadjigeorgiou, J. (2008). Ground support strategies to control large deformations in mining excavations. Journal of the Southern African Institute of Mining and Metallurgy, 108(7), 397-404.
57. Potyondy, D., Cundall, P., and Lee, C. (1996). Modelling rock using bonded assemblies of circular particles. Paper presented at the 2nd North American rock mechanics symposium.
58. Potyondy, D.O., and Cundall, P. (2004). A bonded-particle model for rock. Int J Rock Mech Min Sci, 41(8), 1329-1364. doi:https://doi.org/10.1016/j.ijrmms.2004.09.011
59. Pouragha, M., Eghbalian, M., and Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics & Mining Sciences, 125, 104154.
60. Robinson, P. (1983). Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: Mathematical and General, 16(3), 605.
61. Rodrigues, M.I., and Iemma, A.F. (2014). Experimental design and process optimization: CRC Press.
62. Sagong, M., Park, D., Yoo, J., and Lee, J.S. (2011). Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. Int J Rock Mech Min Sci, 48(7), 1055-1067. doi:https://doi.org/10.1016/j.ijrmms.2011.09.001
63. Sahimi, M. (1993). Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Reviews of modern physics, 65(4), 1393.
64. Sainsbury, B., Pierce, M., and Mas Ivars, D. (2008). Analysis of Caving Behaviour Using a Synthetic Rock Mass — Ubiquitous Joint Rock Mass Modelling Technique. Paper presented at the Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium.
65. Sandy, M., and Player, J. (1999). Reinforcement design investigations at Big Bell. Rock Support and Reinforcement Practice in Mining, 301.
66. Sellers, E., and Klerck, P. (2000). Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels. Journal Tunnelling Underground Space Technology, 15(4), 463-469.
67. Solak, T. (2009). Ground behavior evaluation for tunnels in blocky rock masses. Tunn Undergr Sp Tech, 24(3), 323-330. doi:https://doi.org/10.1016/j.tust.2008.10.004
68. Song, J.-J., Lee, C.-I., and Seto, M. (2001). Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunnelling and underground space technology, 16(4), 341-351.
69. Tawadrous, A., DeGagné, D., Pierce, M., and Mas Ivars, D. (2009). Prediction of uniaxial compression PFC3D model micro‐properties using artificial neural networks. International journal for numerical and analytical methods in geomechanics, 33(18), 1953-1962.
70. Tien, Y.M., and Kuo, M.C. (2001). A failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci, 38(3), 399-412. doi:https://doi.org/10.1016/S1365-1609(01)00007-7
71. Tien, Y.M., Kuo, M.C., and Juang, C.H. (2006). An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci, 43(8), 1163-1181. doi:https://doi.org/10.1016/j.ijrmms.2006.03.011
72. Tonon, F., and Amadei, B. (2003). Stresses in anisotropic rock masses: an engineering perspective building on geological knowledge. Int J Rock Mech Min Sci, 40(7-8), 1099-1120. doi:https://doi.org/10.1016/j.ijrmms.2003.07.009
73. Vervoort, A., Min, K.-B., Konietzky, H., Cho, J.-W., Debecker, B., Dinh, Q.-D., Frühwirt, T., and Tavallali, A. (2014). Failure of transversely isotropic rock under Brazilian test conditions. International Journal of Rock Mechanics & Mining Sciences, 70, 343-352.
74. Wang, S., Sloan, S., Tang, C., and Zhu, W. (2012). Numerical simulation of the failure mechanism of circular tunnels in transversely isotropic rock masses. Tunn Undergr Sp Tech, 32, 231-244. doi:https://doi.org/10.1016/j.tust.2012.07.003
75. Wang, T.-T., and Huang, T.-H. (2014). Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: theory analysis and numerical modeling. Rock Mech Rock Eng, 47(2), 643-657. doi:https://doi.org/10.1007/s00603-013-0405-8
76. Wickham, G., Tiedemann, H., and Skinner, E. (1972). Support determination based on geological predictions. Paper presented at the Proceeding of the North American Rapid Excavation and Tunnelling Conference, New York.
77. Wiseman, N. (1979). Factors affecting the design and condition of mine tunnels. Chamb Mines S Afr, Pretoria, 22.
78. Wittke, W. (1990). Rock mechanics: Springer Berlin.
79. Wong, R., Lin, P., Tang, C., and Chau, K. (2002). Creeping damage around an opening in rock-like material containing non-persistent joints. Eng Fract Mech, 69(17), 2015-2027. doi:https://doi.org/10.1016/S0013-7944(02)00074-7
80. Xu, C., and Dowd, P. (2010). A new computer code for discrete fracture network modelling. Computers & Geosciences, 36(3), 292-301.
81. Xu, D.-P., Feng, X.-T., Chen, D.-F., Zhang, C.-Q., and Fan, Q.-X. (2017). Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings. Tunn Undergr Sp Tech, 64, 133-145. doi:https://doi.org/10.1016/j.tust.2017.01.016
82. Yang, S.-Q., Yin, P.-F., Zhang, Y.-C., Chen, M., Zhou, X.-P., Jing, H.-W., and Zhang, Q.-Y. (2019). Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci, 114, 101-121. doi:https://doi.org/10.1016/j.ijrmms.2018.12.017
83. Yang, X.-x., Jing, H.-w., Chen, K.-f., and Yang, S.-q. (2017). Failure behavior around a circular opening in a rock mass with non-persistent joints: A parallel-bond stress corrosion approach. J Cent South Univ, 24(10), 2406-2420. doi:https://doi.org/10.1007/s11771-017-3652-0
84. Yang, X., Jing, H., and Chen, K. (2016). Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression. Int J Min Sci Technol, 26(4), 729-738. doi:https://doi.org/10.1016/j.ijmst.2016.05.027
85. Yin, P.-F., and Yang, S.-Q. (2019). Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression. Journal of the Geological Society of India, 93(2), 235-246.
86. Yoon, J. (2007). Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci, 44(6), 871-889.
87. Zhang, X.-P., and Wong, L.N.Y. (2014). Displacement field analysis for cracking processes in bonded-particle model. B Eng Geol Environ, 73(1), 13-21. doi:https://doi.org/10.1007/s10064-013-0496-1 |