博碩士論文 106382607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.220.116.34
姓名 裴文斌(Van-Binh Bui)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Effect of Excavation Direction on Stability of Tunnels in Transversely Isotropic Rock Mass)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂隙岩盤中的隧道穩定性問題是工程師們極大的挑戰。含一組或兩組不連續面的裂隙岩體,其工程行為具有異向性,隧道開挖方向對於隧道穩定性有顯著影響。隧道開挖方向與不連續位態間關係對穩定性影響雖已是被確認的工程課題,工程師們多以岩體分類法的經驗指引,加以評分調整。
既有文獻中,針對裂隙對隧道穩定性的理論分析或模型實驗的研究數量頗為豐碩,然而,多侷限於少數特定條件下的研究結果,完整、系統性的研究結果尚付闕如,無法驗證經驗指引的正確性。
本文採用三維離散元素針對不同位態之合成岩體,不同開挖方向情境下之隧道工程行為,進行一系列的數值模擬。合成岩體為一組不連續面,七種傾角,分別為為0, 15, 30, 45, 60, 75 及90。開挖情境有三種,分別為:情境1-開挖方向平行不連續面走向;情境2-開挖方向垂直不連續面走向,且與不連續面傾向同向及情境3-開挖方向垂直不連續面走向,且與不連續面傾向反向。針對隧道周圍的位移、應力集中、裂縫分佈和破壞情況進行分析探討。研究發現,對於低傾角( = 0~15)的岩體,隧道穩定性與掘進方向無關。可評為“普通”。對於中傾角(45~60)的岩體,在開挖情境Ⅰ下,隧道發生嚴重的位移與破壞,而情境2及情境3的位移量較小,且情境3之位移量大於情境2。對於大傾角( = 75-90)的岩體,情境2及情境3均相當穩定,可評為“非常好”,情景1為“良好”。本文比較數值分析結果與 Bieniawski 的經驗指引發現,多數情況兩者相符,仍有部分條件下,兩者有不小出入。本文也發現Bieniawski 的經驗指引本身出現不一致的情況。本文針對不一致的部分,蒐集既有文獻及本文分析結果,小幅修正Bieniawski 的經驗指引。本文分析隧道周圍岩塊的位移量,提出四種位移場類型,以描述隧道周圍岩體的損壞過程和損壞狀態。含弱面的拉伸位移場 (DF-I) 表示弱面周圍岩石層的脫層。完整岩石中的拉伸位移場(DF-II)表示隧道側壁板狀劈裂現象。剪切和拉伸位移場 (DF-III) 和剪切位移場類型 (DF-IV) 描述岩體沿弱面滑動進入隧道的趨勢。本研究 還介紹了對應於每種情況的隧道周圍的故障模式。情境1包含四種破壞模式,例如“分離和屈曲”、“滑動”、“彎曲和剝離”以及“劈裂和剝離”。情景2及情景3中,隧道冠部和仰拱處觀察到“彎曲和剝落離”模式。“板狀劈裂和剝離”發生在側壁上。“脫層和屈曲”發生在具有垂直弱面的岩體的隧道面上。傾角30~75之岩體,在情境2下的破壞模式為“彎曲與剝離”模式,在情境3下則為“滑移”模式。本文為初步研究,結果存在一些局限性,本文提供分析洞察隧道開挖方向對裂隙岩體隧道穩定性影響的研究途徑。
摘要(英) The tunnel stability in fractured rock masses is a great challenge for tunnel engineers. Rock masses contains one set or two set of discontinuities behave anisotropically. The excavation direction of tunnels influences tunnel stability significantly. Empirical guidance regarding tunnel stability reported in the literature indicated that the tunneling direction relative to joint strike and dip angle could affect the stability of a tunnel. However, little scientific data were available to quantify such an effect. This study aims to investigate the effect of joint orientation and dip angle through a series of three-dimensional (3-D) discrete element method (DEM) analyses that are set up to cover various tunneling scenarios. The synthetic rock mass simulated the transversely isotropic rock mass is generated by combining the intact rock model and Discrete Fracture Network (DFN) model. The synthetic rock masses containing one joint set are generated with seven joint dip angles of 0, 15, 30, 45, 60, 75 and 90. Three scenarios of excavation direction were simulated in synthetic rock mass: (1) Scenario I – tunneling direction parallel to joint strike, (2) Scenario II – tunnel axis perpendicular to joint strike and tunneling along dip direction, and (3) Scenario III - tunnel axis perpendicular to joint strike and tunneling against the dip direction. The displacement, stress concentration, crack distribution and failure around the tunnel were measured. It is found that, for rock mass with low dip angles ( = 0-15), the tunnel stability is irrespective to the tunneling direction. It is rated “Fair” for the suitability for tunneling. For rock mass with dip angles of 45- 60, terrible displacement and severe failure is observed in the tunnel under Scenario I, while effects under Scenario II and Scenario III are less severe. The displacement around the tunnel under Scenario III is much more than that under Scenario II. For rock mass with high dip angles ( = 75- 90), the grade of tunnel stability under Scenario II and Scenario III is rated “very favorable,” whereas the grade under Scenario I is found “favorable.” Based on the results of numerical simulations, a slight modification of Bieniawski’s classification guidance is proposed.
Four displacement field types are proposed to describe the damage process and damage state of rock mass around the tunnel. (1) Tensile displacement field with the joint (DF-I) represents the detachment of the rock layer around the joints. (2) Tensile displacement field in intact rock (DF-II) describes the slabbing phenomenon of rock mass in the slabs in the sidewall of the tunnel. (3) Shear and tensile displacement field (DF-III) and (4) shear displacement field type (DF-IV) delineates the tendency to the sliding movement of rock mass along the joint into the tunnel. In addition, failure modes around the tunnel corresponding to each scenario are presented in this study. Scenario Ireports four failure modes such as “Detaching and Buckling,” “Sliding,” “Bending and Spalling,” and “Slabbing and Spalling.” In Scenario II and Scenario III, “Bending and spalling” mode is observed in the crown and invert of the tunnel. “Slabbing and Spalling” occurs in the sidewall. “Detaching and Buckling” occurs in the tunnel face with rock mass containing vertical joint set. In the tunnel face under Scenario II, “Bending and Spalling” mode is observed with dip angles of 30- 75, whereas “Sliding” model is shown with dip angles of 30- 75 in the tunnel face under Scenario III. Although the findings of this study are considered preliminary and with several limitations, it provides insight into the effect of tunneling direction on tunnel stability in a transversely isotropic rock mass.
關鍵字(中) ★ 隧道穩定性
★ 離散元素法
★ 橫向等向性岩體
★ 離散裂縫網絡
★ 破壞模式
★ 隧道開挖方向
關鍵字(英) ★ tunnel stability
★ discrete element method
★ transversely isotropic rock mass
★ discrete fracture network
★ failure modes
★ tunneling direction
論文目次 摘要 I
ABSTRACT III
Acknowledgment VI
Table of Contents VII
List of Figures X
List of Tables XVI
Explanation of Symbols XVII
1. Overview 1
1.1. Problem statement 1
1.2. Problem solving 2
1.3. Motivations and objectivities 6
1.4. Organization 7
2. Literature review 9
2.1. Transversely isotropic rock mass 9
2.2 Synthetic rock mass 10
2.3. Tunneling in a transversely isotropic rock mass 12
3. Methodology 20
3.1. Intact rock model 20
3.2. Fracture Network model 29
3.3. Synthetic rock mass model 31
3.4. Excavation process and measurement systems 35
3.5 Model validation 39
4. Effect of joint orientation on the tunnel stability 44
4.1 Introduction 44
4.2. Scenario I – Tunneling parallel to joint strike 47
4.3. Scenario II – Tunneling perpendicular to joint strike and tunneling with dip 56
4.4. Scenario III - Tunneling perpendicular to joint strike and tunneling against dip 60
4.5. Effect of tunneling directions relative to the joint orientation 65
4.6. Discussion 76
4.7. Conclusion 84
5. Failure modes around the tunnel 86
5.1. Introduction 86
5.2. Displacement field around the tunnel 89
5.3. Scenario I 98
5.4. Scenario II 108
5.5. Scenario III 115
5.6. Conclusion 120
6. Effect of joint distribution (Fisher constant) and Lateral stress coefficient on the tunnel stability 122
6.1. Introduction 122
6.2. Effect of Fisher constant 123
6.3. Effect of lateral stress coefficient 133
6.4. Summary 140
7. Conclusions and Recommendations 142
7.1. Conclusions 142
7.2. Recommendations 145
References 147
參考文獻 1. Aydan, Ö., Akagi, T., and Kawamoto, T. (1993). The squeezing potential of rocks around tunnels; theory and prediction. Rock Mech Rock Eng, 26(2), 137-163. doi: https://doi.org/10.1007/BF0103265
2. Baecher, G., Lanney, N., and Einstein, H. (1977). Statistical description of rock properties and sampling. Paper presented at the The 18th US Symposium on Rock Mechanics (USRMS).
3. Baecher, G.B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 15(2), 329-348.
4. Bieniawski, Z. (1974). Geomechanics classification of rock masses and its application in tunneling. Paper presented at the Proc. 3rd Int. Congress on Rock Mechanics.
5. Bieniawski, Z. (1989). Engineering rock mass classifications: John Wiley & Sons.
6. Blümling, P., Bernier, F., Lebon, P., and Martin, C.D. (2007). The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 588-599. doi:https://doi.org/10.1016/j.pce.2006.04.034
7. Bossart, P., Meier, P.M., Moeri, A., Trick, T., and Mayor, J.-C. (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Engineering Geology, 66(1-2), 19-38. doi:https://doi.org/10.1016/S0013-7952(01)00140-5
8. Bossart, P., Trick, T., Meier, P.M., and Mayor, J.-C. (2004). Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Applied clay science, 26(1-4), 429-448. doi:https://doi.org/10.1016/j.clay.2003.12.018
9. Bossart, P., and Wermeille, S. (2003). The stress field in the Mont Terri region data compilation. Reports of the Federal Office for Water and Geology, 65-92.
10. Cao, R., Cao, P., Lin, H., Ma, G., Fan, X., and Xiong, X. (2018). Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng, 18, 198-214. doi:https://doi.org/10.1016/j.acme.2017.06.010
11. Cundall, P., PA, C., and ODL, S. (1982). Numerical experiments on granular assemblies; measurements and observations.
12. Dershowitz, W., and Einstein, H. (1988). Characterizing rock joint geometry with joint system models. Rock mechanics and rock engineering, 21(1), 21-51.
13. Diambra, A., Festugato, L., Ibraim, E., da Silva, A.P., and Consoli, N. (2018). Modelling tensile/compressive strength ratio of artificially cemented clean sand. Soils and foundations, 58(1), 199-211.
14. Diederichs, M., and Kaiser, P. (1999). Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited. Int J Rock Mech Min Sci, 36(1), 97-117. doi:https://doi.org/10.1016/S0148-9062(98)00180-6
15. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010). Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. International Journal of Rock Mechanics and Mining Sciences, 47(6), 915-926.
16. Farahmand, K., Vazaios, I., Diederichs, M., and Vlachopoulos, N. (2018). Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach. Computers and Geotechnics, 95, 162-179.
17. Fortsakis, P., Nikas, K., Marinos, V., and Marinos, P. (2012). Anisotropic behaviour of stratified rock masses in tunnelling. Eng Geol, 141, 74-83. doi:https://doi.org/10.1016/j.enggeo.2012.05.001
18. FracMan. (2011). Golder Associates Inc. FracMan7: User documentation (Version 7): Atlanta, Golder Associates Inc.
19. Ghazvinian, A., Vaneghi, R.G., Hadei, M., and Azinfar, M. (2013). Shear behavior of inherently anisotropic rocks. International Journal of Rock Mechanics & Mining Sciences, 61, 96-110.
20. Gong, F., Wu, W., Li, T., and Si, X. (2019). Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states. International Journal of Rock Mechanics & Mining Sciences, 122, 104081.
21. Goodman, R.E. (1989). Introduction to rock mechanics (Vol. 2): Wiley New York.
22. Goodman, R.E., and Shi, G.-h. (1985). Block theory and its application to rock engineering.
23. Harthong, B., Scholtès, L., and Donzé, F.-V. (2012). Strength characterization of rock masses, using a coupled DEM–DFN model. Geophysical Journal International, 191(2), 467-480.
24. Hoek, E., and Brown, E. (1980). Underground excavations in rock. Institution of Mining and Metallurgy: CRC Press.
25. Hoerger, S., and Young, D. (1990). Probabilistic prediction of keyblock occurrences. Paper presented at the The 31st US Symposium on Rock Mechanics (USRMS).
26. Itasca. (2014). Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions) (Version 5.0): Minneapolis, MN: ICG.
27. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011). The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci, 48(2), 219-244. doi:https://doi.org/10.1016/j.ijrmms.2010.11.014
28. Jaeger, J. (1960). Shear failure of anistropic rocks. Geological Magazine, 97(1), 65-72.
29. Jaeger, J., and Cook, N. (1979). Fundamentals of rock mechanics (Vol. 3rd ed): London: Chapman & Hall.
30. Jia, P., and Tang, C. (2008). Numerical study on failure mechanism of tunnel in jointed rock mass. Tunn Undergr Sp Tech, 23(5), 500-507. doi:https://doi.org/10.1016/j.tust.2007.09.001
31. Jiang, Y., Li, B., and Yamashita, Y. (2009). Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method. Int J Rock Mech Min Sci, 46(1), 97-106. doi:https://doi.org/10.1016/j.ijrmms.2008.05.004
32. Jiang, Y., Tanabashi, Y., Li, B., and Xiao, J. (2006). Influence of geometrical distribution of rock joints on deformational behavior of underground opening. Tunn Undergr Sp Tech, 21(5), 485-491. doi:https://doi.org/10.1016/j.tust.2005.10.004
33. Karampinos, E., Hadjigeorgiou, J., Hazzard, J., and Turcotte, P. (2015). Discrete element modelling of the buckling phenomenon in deep hard rock mines. International Journal of Rock Mechanics & Mining Sciences, 80, 346-356.
34. Kirsch, G. (1898). Theory of elasticity and application in strength of materials. Zeitschrift des Vereins Deutscher Ingenieure, 42(29), 797-807.
35. Klopčič, J., and Logar, J. (2014). Effect of relative orientation of anisotropy planes to tunnel axis on the magnitude of tunnelling displacements. Int J Rock Mech Min Sci, 71, 235-248. doi:https://doi.org/10.1016/j.ijrmms.2014.02.024
36. Labiouse, V., and Vietor, T. (2014). Laboratory and in situ simulation tests of the excavation damaged zone around galleries in Opalinus Clay. Rock Mech Rock Eng., 47(1), 57-70. doi:http://dx.doi.org/10.1007/s00603-013-0389-4
37. Lambert, C., and Coll, C. (2014). Discrete modeling of rock joints with a smooth-joint contact model. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 1-12.
38. Lee, Y.-K., and Pietruszczak, S. (2008). Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. International Journal of Rock Mechanics & Mining Sciences, 45(4), 513-523.
39. Lee, Y.-K., and Pietruszczak, S. (2015). Tensile failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci, 79, 205-215.
40. Lei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput Geotech, 85, 151-176. doi:https://doi.org/10.1016/j.compgeo.2016.12.024
41. Lin, Q., Cao, P., Meng, J., Cao, R., and Zhao, Z. (2020). Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling. Theor Appl Fract Mech, 109, 102692. doi:https://doi.org/10.1016/j.tafmec.2020.102692
42. Lisjak, A., Garitte, B., Grasselli, G., Müller, H., and Vietor, T. (2015). The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): short-term rock mass response and FDEM numerical analysis. Tunn Undergr Sp Tech, 45, 227-248. doi:https://doi.org/10.1016/j.tust.2014.09.014
43. Long, J.C., Remer, J., Wilson, C., and Witherspoon, P. (1982). Porous media equivalents for networks of discontinuous fractures. Water resources research, 18(3), 645-658.
44. Ma, Y., and Huang, H. (2018). A displacement-softening contact model for discrete element modeling of quasi-brittle materials. Int J Rock Mech Min Sci, 104, 9-19.
45. Marschall, P., Distinguin, M., Shao, H., Bossart, P., Enachescu, C., and Trick, T. (2006). Creation and evolution of damage zones around a microtunnel in a claystone formation of the Swiss Jura Mountains. Paper presented at the SPE International Symposium and Exhibition on Formation Damage Control.
46. Martin, C., Kaiser, P., and McCreath, D. (1999). Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Canadian Geotechnical Journal, 36(1), 136-151.
47. Mercier-Langevin, F., and Wilson, D. (2013). Lapa Mine–ground control practices in extreme squeezing ground. Paper presented at the Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction.
48. Nussbaum, C., Bossart, P., Amann, F., and Aubourg, C. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104(2), 187.
49. Obert, L., and Duvall, W.I. 1967. Rock mechanics and the design of structures in rock. Retrieved from
50. Ortlepp, W., O′Ferrall, R.M., and Wilson, J.W. (1976). Support methods in tunnels.
51. Ortlepp, W., and Stacey, T. (1994). Rockburst mechanisms in tunnels and shafts. Tunn Undergr Sp Tech, 9(1), 59-65.
52. Park, B., and Min, K.-B. (2015). Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min Sci, 76, 243-255.
53. Park, B., Min, K.-B., Thompson, N., and Horsrud, P. (2018). Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. International Journal of Rock Mechanics & Mining Sciences, 110, 120-132.
54. Pierce, M., Cundall, P., Potyondy, D., and Ivars, D.M. (2007). A synthetic rock mass model for jointed rock. Paper presented at the 1st Canada-US Rock Mechanics Symposium.
55. Plackett, R.L., and Burman, J.P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305-325.
56. Potvin, Y., and Hadjigeorgiou, J. (2008). Ground support strategies to control large deformations in mining excavations. Journal of the Southern African Institute of Mining and Metallurgy, 108(7), 397-404.
57. Potyondy, D., Cundall, P., and Lee, C. (1996). Modelling rock using bonded assemblies of circular particles. Paper presented at the 2nd North American rock mechanics symposium.
58. Potyondy, D.O., and Cundall, P. (2004). A bonded-particle model for rock. Int J Rock Mech Min Sci, 41(8), 1329-1364. doi:https://doi.org/10.1016/j.ijrmms.2004.09.011
59. Pouragha, M., Eghbalian, M., and Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics & Mining Sciences, 125, 104154.
60. Robinson, P. (1983). Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: Mathematical and General, 16(3), 605.
61. Rodrigues, M.I., and Iemma, A.F. (2014). Experimental design and process optimization: CRC Press.
62. Sagong, M., Park, D., Yoo, J., and Lee, J.S. (2011). Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. Int J Rock Mech Min Sci, 48(7), 1055-1067. doi:https://doi.org/10.1016/j.ijrmms.2011.09.001
63. Sahimi, M. (1993). Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Reviews of modern physics, 65(4), 1393.
64. Sainsbury, B., Pierce, M., and Mas Ivars, D. (2008). Analysis of Caving Behaviour Using a Synthetic Rock Mass — Ubiquitous Joint Rock Mass Modelling Technique. Paper presented at the Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium.
65. Sandy, M., and Player, J. (1999). Reinforcement design investigations at Big Bell. Rock Support and Reinforcement Practice in Mining, 301.
66. Sellers, E., and Klerck, P. (2000). Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels. Journal Tunnelling Underground Space Technology, 15(4), 463-469.
67. Solak, T. (2009). Ground behavior evaluation for tunnels in blocky rock masses. Tunn Undergr Sp Tech, 24(3), 323-330. doi:https://doi.org/10.1016/j.tust.2008.10.004
68. Song, J.-J., Lee, C.-I., and Seto, M. (2001). Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunnelling and underground space technology, 16(4), 341-351.
69. Tawadrous, A., DeGagné, D., Pierce, M., and Mas Ivars, D. (2009). Prediction of uniaxial compression PFC3D model micro‐properties using artificial neural networks. International journal for numerical and analytical methods in geomechanics, 33(18), 1953-1962.
70. Tien, Y.M., and Kuo, M.C. (2001). A failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci, 38(3), 399-412. doi:https://doi.org/10.1016/S1365-1609(01)00007-7
71. Tien, Y.M., Kuo, M.C., and Juang, C.H. (2006). An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci, 43(8), 1163-1181. doi:https://doi.org/10.1016/j.ijrmms.2006.03.011
72. Tonon, F., and Amadei, B. (2003). Stresses in anisotropic rock masses: an engineering perspective building on geological knowledge. Int J Rock Mech Min Sci, 40(7-8), 1099-1120. doi:https://doi.org/10.1016/j.ijrmms.2003.07.009
73. Vervoort, A., Min, K.-B., Konietzky, H., Cho, J.-W., Debecker, B., Dinh, Q.-D., Frühwirt, T., and Tavallali, A. (2014). Failure of transversely isotropic rock under Brazilian test conditions. International Journal of Rock Mechanics & Mining Sciences, 70, 343-352.
74. Wang, S., Sloan, S., Tang, C., and Zhu, W. (2012). Numerical simulation of the failure mechanism of circular tunnels in transversely isotropic rock masses. Tunn Undergr Sp Tech, 32, 231-244. doi:https://doi.org/10.1016/j.tust.2012.07.003
75. Wang, T.-T., and Huang, T.-H. (2014). Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: theory analysis and numerical modeling. Rock Mech Rock Eng, 47(2), 643-657. doi:https://doi.org/10.1007/s00603-013-0405-8
76. Wickham, G., Tiedemann, H., and Skinner, E. (1972). Support determination based on geological predictions. Paper presented at the Proceeding of the North American Rapid Excavation and Tunnelling Conference, New York.
77. Wiseman, N. (1979). Factors affecting the design and condition of mine tunnels. Chamb Mines S Afr, Pretoria, 22.
78. Wittke, W. (1990). Rock mechanics: Springer Berlin.
79. Wong, R., Lin, P., Tang, C., and Chau, K. (2002). Creeping damage around an opening in rock-like material containing non-persistent joints. Eng Fract Mech, 69(17), 2015-2027. doi:https://doi.org/10.1016/S0013-7944(02)00074-7
80. Xu, C., and Dowd, P. (2010). A new computer code for discrete fracture network modelling. Computers & Geosciences, 36(3), 292-301.
81. Xu, D.-P., Feng, X.-T., Chen, D.-F., Zhang, C.-Q., and Fan, Q.-X. (2017). Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings. Tunn Undergr Sp Tech, 64, 133-145. doi:https://doi.org/10.1016/j.tust.2017.01.016
82. Yang, S.-Q., Yin, P.-F., Zhang, Y.-C., Chen, M., Zhou, X.-P., Jing, H.-W., and Zhang, Q.-Y. (2019). Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci, 114, 101-121. doi:https://doi.org/10.1016/j.ijrmms.2018.12.017
83. Yang, X.-x., Jing, H.-w., Chen, K.-f., and Yang, S.-q. (2017). Failure behavior around a circular opening in a rock mass with non-persistent joints: A parallel-bond stress corrosion approach. J Cent South Univ, 24(10), 2406-2420. doi:https://doi.org/10.1007/s11771-017-3652-0
84. Yang, X., Jing, H., and Chen, K. (2016). Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression. Int J Min Sci Technol, 26(4), 729-738. doi:https://doi.org/10.1016/j.ijmst.2016.05.027
85. Yin, P.-F., and Yang, S.-Q. (2019). Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression. Journal of the Geological Society of India, 93(2), 235-246.
86. Yoon, J. (2007). Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci, 44(6), 871-889.
87. Zhang, X.-P., and Wong, L.N.Y. (2014). Displacement field analysis for cracking processes in bonded-particle model. B Eng Geol Environ, 73(1), 13-21. doi:https://doi.org/10.1007/s10064-013-0496-1
指導教授 田永銘(Yong-Ming Tien) 審核日期 2022-2-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明