博碩士論文 108322100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.135.207.201
姓名 陳佳恩(Jia-En Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證
★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計
★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
★ 雙向天鉤主動隔震系統之數值模擬分析及實驗驗證★ 天鉤主動隔震系統應用強化學習DDPG與直接輸出回饋之最佳化設計與分析
★ 相位控制多元主動調諧質量阻尼器於結構減震性能評估之數值模擬分析★ 倒擺懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之分析與實驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出「天鉤主動隔震系統」,應用於單自由度隔震機構並詳列其運動方程式及控制律,進行數值模擬分析及實驗之驗證。改良傳統天鉤控制理論,將以絕對速度回饋之控制力,調整為量測相對地表速度及地表加速度,藉由積分地表加速度以獲取地表速度訊號,再以相對速度訊號及地表速度訊號計算控制力;不僅能提升訊號量測的便利性,更能增加回饋訊號的穩定性。為了掌握地表加速度積分濾波運算成地表速度,自行引入積分濾波器,並藉由濾波消除積分導致之穩態誤差。將天鉤主動隔震系統方程式擴展為包含積分濾波器之形式,使控制及最佳化設計皆能考量積分濾波器之影響,如:時間延遲誤差、穩定性問題。由於天鉤主動隔震系統非全狀態回饋,利用直接輸出回饋最佳化(direct output feedback optimization)最佳化設計方法,以絕對加速度最小化為設計目標,設計控制力增益參數。有別於傳統天鉤控制理論,天鉤主動隔震系統藉由最佳化設計及兩個控制力控制參數,使固有阻尼能被充分考量;因此,不同固有阻尼比之系統能有一致的最佳化反應。於頻率反應函數分析中,對於一般地震的顯著頻率範圍0.1Hz至10Hz,天鉤主動隔震系統不僅優於被動隔震系統還優於傳統天鉤控制理論。於地震歷時分析中,天鉤主動隔震系統對於近域地震及遠域地震皆有良好的隔震效果,且優於被動隔震系統。於敏感度分析中,相對位移、絕對加速度、控制力均對於控制力增益參數變化敏感;另外,控制力亦對於勁度的變化敏感。於穩定性分析中,兩個控制力增益參數於一定範圍內的變化,系統恆為穩定可控制,而當中作為地表速度回饋之控制力增益參數不影響系統之穩定。藉由線性伺服滑台實現天鉤主動隔震系統,並以振動台實驗驗證其可行性。實驗結果表明,天鉤主動隔震系統對於不同地震皆有一定的隔震效果。實驗結果與數值模擬之差距,經由功率頻譜密度分析,發現是因為設備產生之高頻振動及伺服滑台對於高頻的控制有其限制所致。
摘要(英) In this study, the skyhook active isolation control theory is developed and applied to a single-degree-of-freedom active isolation system. The equation of motion and proposed control algorithms are derived in detail. The numerical simulation analysis and experimental verification of the developed skyhook active isolation system are carried out. The proposed control algorithm improved the traditional skyhook control by adjusting the measurements from only the absolute velocity of the system to the velocity relative to the ground as feedback signal; meanwhile, it uses the ground velocity as the feedthrough signal. The velocity relative to the ground and ground velocity can have individual control gains. In addition, the ground velocity is obtained by integration of the measuring ground acceleration. This modification not only improves the convenience of measurements, but also enhances the stability of the feedback signal. To access the ground velocity from the ground acceleration, the real-time integral-filter is introduced and designed to process the integration and eliminate the caused steady-state error. Moreover, this integral-filter can be directly combined into the model of the skyhook active isolation system, so that the influence of the integral-filter, i.e. the time delay issue or stability problem, can be guaranteed. Since the proposed skyhook active isolation system is not using full-state feedback, the direct output feedback optimization can be adapted to determine the optimal control gains with the goal of minimizing the absolute acceleration of the system. Different with the traditional skyhook control, the proposed skyhook active isolation system uses the relative velocity and the ground velocity as measurements, so that the influence of inherent damping can be fully considered. Therefore, even though the system has different inherent damping ratios, by adapting different control gains, the skyhook active isolation system can achieve the same optimum isolated responses. In the frequency response function analysis, the skyhook active isolation system is more outperforming than the passive isolation system and traditional skyhook control, especially when the frequency of base excitation is between 0.1Hz to 10Hz which is the range of dominant frequency of normal earthquakes. Furthermore, in the time-history analysis, the performance of the skyhook active isolation system is much better than the passive isolation system whether subjected to far-field earthquake or near-fault earthquake. In the sensitivity analysis, the relative displacement, the absolute acceleration, and the control force of the skyhook active isolation system are all sensitive to the control gains. The stability analysis also showed that the skyhook active isolation system is always stable, even the control gains various within a certain range. Besides, the control gain, which is the ground velocity signal feedthrough, does not affect the stability of the system. Finally, the skyhook active isolation system is practiced by a linear servo slider to verify its feasibility by the shaking table experiment. The experimental results show that the skyhook active isolation system performs well to isolate seismic force. However, there is still a certain difference between experimental results and numerical simulation. The difference is majorly existing at high-frequency range which is observed by power spectral density of the absolute acceleration. Therefore, this high-frequency vibration is considered caused by the friction of the ball screw mechanism rather than the control algorithm.
關鍵字(中) ★ 主動隔震
★ 天鉤控制理論
★ 地表加速度回饋
★ 積分濾波器
★ 直接輸出回饋最佳化
★ 振動台實驗
關鍵字(英) ★ active isolation
★ skyhook control theory
★ ground acceleration feedback
★ integral-filter
★ direct output feedback optimization
★ shaking table experiment
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
符號說明 xvii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 1
1-3 研究內容 5
第二章 研究方法與理論 7
2-1 天鉤控制理論 7
2-2 單自由度天鉤主動隔震系統 8
2-3 天鉤主動隔震增益參數最佳化設計 12
2-3-1 建立最佳化增益參數系統 12
2-3-2 最佳化增益參數設計運算 14
2-4 主動隔震控制流程 16
第三章 天鉤主動隔震系統數值模擬 21
3-1 特徵分析 22
3-2 頻率反應函數 23
3-2-1 不同固有阻尼比之頻率反應函數 24
3-2-2 不同設計阻尼比之頻率反應函數 25
3-2-3 與傳統天鉤控制系統比較 26
3-3 地震歷時數值模擬 30
3-3-1 輸入地震歷時 30
3-3-2 地震歷時下反應 30
3-4 敏感度分析 33
3-4-1 勁度敏感度分析 34
3-4-2 固有阻尼比敏感度分析 35
3-4-3 控制力增益參數GD敏感度分析 36
3-4-4 控制力增益參數GV敏感度分析 37
3-5 系統穩定性分析 39
第四章 天鉤主動隔震系統振動台實驗 63
4-1 實驗設備與配置 63
4-2 控制介面與量測儀器 64
4-3 狀態預測系統之轉速控制 64
4-4 輸入地震歷時 66
第五章 實驗結果與討論 75
5-1 振動台加速度之功率頻譜密度 75
5-2 各項反應之實驗結果 76
5-3 相同震波不同PGA之比較 77
5-4 不同震波之比較 78
5-4-1 絕對加速度隔震效果 78
5-4-2 控制力的差異 78
5-5 實驗與數值模擬之比較 79
第六章 結論與建議 99
6-1 結論 99
6-2 未來研究與建議 102
參考文獻 103
附錄A 107
附錄B 109
附錄C 113
參考文獻 [1] 內政部營建署,「建築物耐震設計規範及解說」,內政部營建署台內營字第0990810250號令,2011年1月。
[2] 內政部消防署,「0206震災中央災害應變中心總結報告」,內政部營建署,2016年。
[3] 陳良榕,「9成產能有高地震風險 張忠謀為何老神在在? 」,天下雜誌,2016年2月。2022年3月12日,取自https://www.cw.com.tw/article/5074578。
[4] 方佩文,「『震』撼南科!台積電、群創成受災戶損失破億」,三立新聞,2016年2月。2022年3月12日,取自https://www.setn.com/News.aspx?NewsID=124276。
[5] Soong, T.T., Spencer, B.F., Jr., “Active, semi-active and hybrid control of structures,” Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 2000, pp. 387-402.
[6] Constantinou, M.C., Tadjbakhsh, I.G., “Optimum characteristics of isolated structures,” Journal of Structural Engineering, 111(12), 1985, pp. 2733-2750.
[7] Inaudi, J.A., Kelly, J.M., “Optimum damping in linear isolation systems,” Earthquake Engineering & Structural Dynamics, 22(7), 1993, pp. 583-598.
[8] Hameed, A., Koo, M.S., Dai Do, T., Jeong, J.H., “Effect of lead rubber bearing characteristics on the response of seismic-isolated bridges,” KSCE Journal of Civil Engineering, 12(3), 2008, pp. 187-196.
[9] Vatanshenas, A., Mori, T., Murota, N., “Structural rehabilitation using high damping rubber bearing (HDRB),” Bulletin of the New Zealand Society for Earthquake Engineering, 54(1), 2021, pp. 49-57.
[10] Mokha, A.S., Amin, N., Constantinou, M.C., Zayas, V., “Seismic isolation retrofit of large historic building,” Journal of Structural Engineering, 122(3), 1996, pp. 298-308.
[11] Inaudi, J.A., Kelly, J.M., “Hybrid isolation systems for equipment protection,” Earthquake Engineering & Structural Dynamics, 22(4), 1993, pp. 297-313.
[12] Xiong, Y.P., Xing, J.T., Price, W.G., Wang, X.P., “Hybrid active and passive control of vibratory power flow in flexible isolation system,” Shock and Vibration, 7(3), 2000, pp. 139-148.
[13] Pu, J.P., Kelly, J.M., “Active control and seismic isolation,” Journal of Engineering Mechanics, 117(10), 1991, pp. 2221-2236.
[14] Chang, C.M., Spencer, B.F., Jr., “Active base isolation of buildings subjected to seismic excitations,” Earthquake Engineering & Structural Dynamics, 39(13), 2010, pp. 1493-1512.
[15] Pozo, F., Montserrat, P.M., Rodellar, J., Acho, L., “Robust active control of hysteretic base‐isolated structures: Application to the benchmark smart base‐isolated building,” Structural Control and Health Monitoring, 15(5), 2008, pp. 720-736.
[16] Soong, T.T., Reinhorn, A.M., “An overview of active and hybrid structural control research in the US,” The Structural Design of Tall Buildings, 2(3), 1993, pp.193-209.
[17] 林瑞泰,「滑動式隔震平台應用於振動敏感性設備之地震模擬試驗」,國立交通大學,碩士論文,2020年1月。
[18] 栗正暐、黃宣諭,「高科技半導體廠結構設計之關鍵考量」,土木水利,第四十六卷,第六期,社團法人中國土木水利工程學會,2019年12月,30-37頁。
[19] Gordon, C.G., “Generic vibration criteria for vibration-sensitive equipment,” Optomechanical Engineering and Vibration Control, Vol.3786, SPIE, 1999.
[20] Amick, H., “On generic vibration criteria for advanced technology facilities: with a tutorial on vibration data representation,” Journal of the Institute Enviromental Sciences, 40(5), 1997, pp. 35-44.
[21] Preumont, A., Francois, A., Bossens, F., Abu Hanieh, A., “Force feedback versus acceleration feedback in active vibration isolation,” Journal of Sound and Vibration, 257(4), 2002, pp. 605-613.
[22] Huang, X, Elliott, S.J., Brennan, M.J., “Active isolation of a flexible structure from base vibration,” Journal of Sound and Vibration, 263(2), 2003, pp. 357-376.
[23] Gopala Rao, L.V.V., Narayanan, S., “Sky-hook control of nonlinear quarter car model traversing rough road matching performance of LQR control,” Journal of Sound and Vibration, 323, 2009, pp. 515-529.
[24] Priyandoko, G., Mailah, M., Jamaluddin, H., “Vehicle active suspension system using skyhook adaptive neuro active force control,” Mechanical Systems and Signal Processing, 23(3), 2009, pp. 855-868.
[25] 吳偉豪,「運用適應性訊號處理與比例控制於主動隔振系統之研究」,南台科技大學,碩士論文,2013年6月。
[26] 羅偉宸,「主動式相位控制調諧質量阻尼器之研發與實驗驗證」,國立中央大學,民國2020年6月。
指導教授 賴勇安(Yong-An Lai) 審核日期 2022-3-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明