以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:93 、訪客IP:18.224.73.124
姓名 張書維(Shu-Wei Zhang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 低矮建築物使用微型樁基礎之抗液化效果-離心模型試驗 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-3-22以後開放) 摘要(中) 本研究使用動態離心機模型試驗模擬五層樓建築物在基腳板設置微型樁基礎之抗
液化耐震行為。模擬地盤厚20m,淺層5m 為液化土層,以下為較緊密之非液化砂土層
(Dr = 80 or 95%)或混和土層。小口徑樁直徑為33cm,貫入非液化土層深度分別為樁徑之
2、6與10倍,以探討貫入非液化層深度、不同相對密度與非液化層置換為不透水層之影
響。五層樓建築物重量與基腳尺寸設計,依照台灣常見之單棟五層樓RC公寓進行設計。
在基盤輸入由小到大輸入不同震度之實際地震與正弦波加速度運動歷時,觀察模型於地
震期間與震後之受震行為。對照試驗組為無微型樁基礎之淺基腳五層樓建築物模型。
在觀測到土層的主頻為2.0 ~ 2.4 Hz且微型樁基礎的主頻為1.0 ~1.2 Hz狀況下試驗結
果顯示,總體土層之超額孔隙水壓消散方向為建築物陣列往自由場陣列且深層往表層的
方向消散。微型樁基礎具有明顯抑制建築物在震動過程中以及結束後傾角產生的效果,
且在設置微型樁基礎、增加微型樁基礎的貫入深度後也具有明顯抑制建築物在震動過程
中以及結束後的沉陷產生。且在震動過程中觀測到軸力形式之微型樁基礎在軸力歷時中
具有軸力值尖峰反向之行為,彎矩形式之微型樁基礎則在彎矩歷時中具有彎矩值尖峰同
向之行為。震動過程中因建築物沉陷量小於周圍地表沉陷量而在微型樁基礎樁身累積負
摩擦力,但在震動過程後隨著超額孔隙水壓之消散,微型樁基礎樁身之負摩擦力隨之消
散並往正值恢復,並再次提供建築物承載能力。無論是軸力或彎矩形式之微型樁基礎,
接隨著淺層土壤液化,往小口徑基樁深度方向增大,顯示因淺層土壤液化喪失承載能力,
轉由深層土壤承載。摘要(英) The objective of this research is to use small size pile (micro pile) to reduce settlement and
tilt of building in liquefiable soils. Dynamic centrifuge tests were used to simulate the
liquefaction mitigation and seismic behavior of a five-story building with footing supported by
micro-piles. The model ground is 20m thick, the shallow 5m is liquefied sand layer, and the
beneath is dense non-liquefied sand layer or mix layer. The diameter of the micro-piles is 33cm,
and the penetration depth into the non-liquefied soil layer is 2, 6 and 10 times of the micro-pile
diameter, to explore the influence of the different relative density of non-liquefied sand layer,
mix layer and penetration depth. The weigth and footing dimension of the five-story building
are designed in accordance with the common sigle five-story RC department in Taiwan.
The results show that the domain frequency of the ground is 2.0 ~ 2.4Hz and the domain
frequency of building with micro-pile structure is 1.0 ~ 1.2Hz. The tests results show that the
dissipation of excess pore water pressure in the soil layer is from building to free field and from
deep to surface of the soil layer. The test results show that the micro-piles and increase the
penetration depth has the obvious effect of restraining the settlement and the inclination of the
building after the earthquake. During the vibration, it was observed that the axial-force
instrumented piles had symmetrical reverse axial force waveform, and the lateral instrumented
piles had similar and in phase bending moment wave forms. Because the settlement of the
building less than settlement of the soil layer, the negative friction force were accumulated on
the micro-pile. But after vibration, with the dissipation of the excess pore water pressure, the
negative friction on the micro-pile will recover and re-provide bearing capacity of the building.
When the shallow soil liquefies, axial force and moment increases in the deeper part of the
micro-piles, the shallow soil loses liquefaction and the load is transferred to the deep soil.
Key word: small size pile, dynamic centrifuge test, soil liquefaction, low-rese building關鍵字(中) ★ 微型樁
★ 離心機動態試驗
★ 土壤液化
★ 低矮建築物關鍵字(英) ★ small size pile
★ dynamic centrifuge test
★ soil liquefaction
★ low-rise building論文目次 摘要......................................................................................................................vi
ABSTRACT........................................................................................................vii
致謝....................................................................................................................viii
目錄......................................................................................................................ix
表目錄................................................................................................................xiii
圖目錄...............................................................................................................xvii
第一章 緒論......................................................................................................... 1
1-1 研究動機與目的..................................................................................... 1
1-2 研究方法................................................................................................. 2
1-3 論文架構................................................................................................. 2
第二章 文獻回顧................................................................................................. 3
2-1 土壤液化................................................................................................. 3
2-2 離心機模型原理..................................................................................... 5
2-2-1 離心模型之基本相似律 .............................................................. 6
2-2-2 動態離心機之基本相似律 .......................................................... 6
2-3 試驗用孔隙流體................................................................................... 10
2-4 液化地盤建築物相關研究................................................................... 12
2-4-1 土層相對密度與滲透性對液化地盤之影響............................ 12x
2-4-2 樁基礎建築物之循環加載與震動台試驗................................ 13
第三章 試驗方法、設備與步驟....................................................................... 19
3-1 試驗方法............................................................................................... 19
3-2 試驗土壤與基本性質........................................................................... 19
3-3 試驗設備與相關儀器........................................................................... 23
3-3-1 中央大學地工離心機 ................................................................ 23
3-3-2 中央大學離心震動台與資料擷取系統 .................................... 25
3-3-3 積層板試驗箱(Laminar box)與橡皮膜..................................... 30
3-3-4 五層樓建築物與微型樁基礎模型 ............................................ 32
3-3-5 各式感測器 ................................................................................ 35
3-3-6 大型移動式霣降儀 .................................................................... 39
3-4 試驗準備步驟與流程........................................................................... 41
3-4-1 橡皮模製作 ................................................................................ 41
3-4-2 積層板試驗箱組裝 .................................................................... 43
3-4-3 微型樁樁身應變計之黏貼與製作 ............................................ 44
3-4-4 小口徑基樁之校正試驗與防水 ................................................ 46
3-4-5 重模試體製作 ............................................................................ 49
3-4-5 土壤試體飽和 ............................................................................ 52
3-4-6 離心模型試驗前準備與震動試驗 ............................................ 54xi
第四章 試驗結果與分析................................................................................... 56
4-1 試驗規劃與內容................................................................................... 56
4-2 試驗結果分析與討論........................................................................... 65
4-3 各試驗升 g 過程之分析與討論 .......................................................... 66
4-3-1 升 g 過程之土層變化 ................................................................ 66
4-3-2 升 g 過程之建築物旋轉角 ........................................................ 68
4-3-3 升 g 過程建築物與土層之沉陷量 ............................................ 69
4-3-4 升 g 過程之總應力變化 ............................................................ 72
4-4 加速度歷時比較................................................................................... 74
4-4-1 土層加速度歷時衰減行為與突波訊號 .................................... 76
4-4-2 建築物高程與土層深度對加速度歷時之影響...................... 120
4-4-3 建築物與土層的頻率特性 ...................................................... 135
4-5 超額孔隙水壓比較............................................................................. 152
4-5-1 輸入不同震動波形與強度之超額孔隙水壓歷時.................. 154
4-5-2 輸入不同震動波形與強度之超額孔隙水壓比與加速度歷時
............................................................................................................. 195
4-6 建築物與自由土層之沉陷量比較 .................................................... 244
4-6-1 建築物與自由土層之沉陷量歷時與殘餘沉陷量.................. 244
4-6-2 建築物受震後之傾倒行為 ...................................................... 258
4-7 建築物下方之總應力歷時................................................................. 267xii
4-8 小口徑基樁基礎樁身之軸力與彎矩行為 ........................................ 275
4-8-1 小口徑基樁樁身彎矩歷時 ...................................................... 275
4-8-2 小口徑基樁樁身軸力歷時 ...................................................... 317
4-9 試驗之全過程歷時............................................................................. 396
4-9-1 全過程之水壓計歷時 .............................................................. 396
4-9-2 全過程之沉陷歷時 .................................................................. 440
4-9-3 全過程之微型樁基礎樁身軸力歷時 ...................................... 470
第五章 結論..................................................................................................... 508
參考文獻........................................................................................................... 510參考文獻 [1] Abdoun, T., Dobry, R., O′Rourke, T.D., Goh, S.H., “Pile response to lateral spreads:
Centrifuge Modeling,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.
129, No. 10, pp. 869-878 (2007)
[2] Adamidis, O., Madabhushi, G.S.P., “Use of viscous pore fluids in dynamic centrifuge
modeling,” Intermational Journal of Physical Modelling in Geotechnics, Vol. 15, No. 3,
pp. 141-149 (2016)
[3] Bardley, B.A., Rajesh, M.C., Dhakal, P., Macrae, G.A., “Intensity measures for the
seismics response of pile foundations,” Soil Dynamics and Earthquake Engineering, Vol.
29, No. 6, pp. 1046-1058 (2009)
[4] Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., Chang, D., “Liquefaction - induced
Softening of load transfer between pile groups and laterally spreading crusts,” Journal of
Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 1, pp. 91-103 (2007)
[5] Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., Wilson, D., “Mechanisms of seismically
induced settlement of buildings with shallow foundations on liquefiable soil,” Journal of
Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1, pp. 309-323 (2010)
[6] Hussien, M.N., Tobita, T., Iai, S., Karray, M.,“Soil - pile - structure kinematic and inertial
interaction observed in geotechnical centrifuge seperiments,” Soil Dynamics and
Earthquake Engineering, Vol. 89, No. 10, pp. 75-84 (2016)
[7] Kumar, R., Sawaishi, M., Horikoshi, K., Takahashi, A., “Centrifuge modeling of hybrid
foundation to mitigate liquefaction - induced effects on shallow foundation resting on
liquefiable ground,” Soils and Foundations, Vol. 59,Issue. 6, pp. 2083-2098 (2019)
[8] Krammer, S.L., Geotechnical earthquake engineering, Prentice Hall, New Jersey(1996).511
[9] Liu, L., Dobry, R., “Seismic response of shallow foundation on liquefiable sand,” Journal
of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 557-567 (1997)
[10] Sandikkaya, M.A., Akkar, S., “Cumulative absolute velocity, arias intensity and
significant duration predictive models from a pan - European strong - motion dataset,”
Bulletin of Earthquake Engineering, Vol. 15, pp.1881-1898 (2017)
[11] Sharp, M.K., Dobry, R., Abdoun, T., “Liquefaction centrifuge modeling of sands of
different permeability” Journal of Geotechnical and Geoenvironmental Engineering, Vol.
129, No. 12, pp. 1083-1093 (2003)
[12] Zhang, L., Goh, S.H., Yi, J., “A centrifuge study of the seismic response of pile–raft
systems embedded in soft clay,” Géotechnique, Vol. 67, Issue. 6, pp. 479-490 (2017)
[13] 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)
[14] 中華民國內政部營建署,建築物技術規則,中華民內政部營建署(2008)
[15] 楊子霈,「以動態離心模型試驗模擬不同形式基礎建築物於液化地盤之受震反應」,
碩士論文,國立中央大學土木工程學系,中壢(2013)
[16] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學土木
工程學系,中壢(2016)
[17] 陳思凱,「砂土中模型基樁之單向反覆軸向載重試驗」,碩士論文,國立中央大學
土木工程學系,中壢(2017)
[18] 邱笙輔,「以動態離心模型試驗模擬淺基礎建築物於非均質液化地盤之受震反應」,
碩士論文,國立中央大學土木工程學系,中壢(2018)
[19] 許敬昇,「飽和濕砂中模型基樁之單向反覆軸向載重試驗」,碩士論文,國立中央
大學土木工程學系,中壢(2018)
[20] 邱義宏,「五層樓淺基礎建築物受震液化反應 - 離心模型試驗」,碩士論文,國立
中央大學土木工程學系,中壢(2020)指導教授 黃俊鴻 審核日期 2022-3-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare