博碩士論文 108324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.216.251.190
姓名 許立翔(Li-Xiang Xu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電刺激對H9C2心肌肌母細胞分化的影響
(The effects of electrical stimulation on the differentiation of H9C2 cardiomyoblast)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於聚吡咯(polypyrrole, PPy)具有良好光學性質及生物相容性, 因此我們以 PPy 製作成電刺激裝置,將大鼠心肌肌母細胞 H9C2 培養 於裝置上並於兩側連接電極,再接上 Arduino 控制器與電源供應器, 利用定電壓(constant DC)與單相電脈衝(pulse, 1Hz, 2 ms)以高與低電 場(7、1V/cm),探討不同參數的電刺激對 H9C2 細胞活性、排列與分 化的影響。電脈衝在高低電場都能提高細胞活性的表現,但定電壓則 要在較高電壓時才能提高細胞活性。兩種通電模式在高電場的刺激下 都能促進細胞排列,定電壓組因其持續通電的特性能使排列更為明顯。 就 qPCR 分析來看,高電場的電刺激能在早期增進 GATA4 心臟轉錄 因子上調控。cTnT 及 α-actinin 作為心臟分化的後期指標,α-actinin 不論基因或蛋白質表現主要均由電場強度決定,與電刺激型式無關。 qPCR 結果顯示電壓增加有助於 cTnT 的基因表現,其中電脈衝較定 電壓對 cTnT 上調控效果更佳,但是西方點墨分析結果顯示 cTnT 蛋 白質表現與只跟電壓有關,推測可能是高電場電脈衝影響細胞活性所 致。最後在免疫螢光染色得知,因為高電場的刺激促進細胞排列,也 因此促進了成熟心肌細胞的順向排列,這些結果顯示以聚吡咯基材為 媒介的電流刺激可促進心肌分化,極具心臟組織工程的潛力。
摘要(英) Polypyrrole (PPy) exhibits good optical property and biocompatibility, so we used PPy to construct a bioreactor for electrical stimulation application. Rat cardiomyoblast cells, H9C2, were seeded to the bioreactor which was connected with electrodes in two opposite ends. We applied external power supply and Arduino controller to generate monophasic pulse current (1 Hz and 2 ms) and constant direct current (DC) in electric fields of 1 or 7 V/cm to investigate the effects of electrical stimulation mode as well as electrical fields on the activity, morphology and differentiation of H9C2 cells. The MTT results showed that pulse stimulation at 1 and 7 V/cm both promoted cell activity, whereas constant DC demonstrated cell activity improvement only at 7 V/cm. Only 7 V/cm of pulse or constant DC can align H9C2 cells to parallel to electrical field, and constant DC resulted in better alignment than that of pulse group. The qPCR results showed that pulse and constant at 7 V/cm both enhanced the upregulation of GATA4, a cardiac transcription maker, in early stage of differentiation. Two mature cardiac markers, cardiac muscle troponin T (cTnT) and α-actinin, were also investigated during differentiation. The qPCR and Western blotting results showed that the RNA and protein expression levels of α-actinin were mainly dependent on electric field and independent of stimulation mode. Both RNA and protein expression levels of cTnT also increased with electric fields. However, the qPCR results indicated that pulse stimulation up-regulated cTnT gene higher than that of the constant DC group, especially at 7 V/cm. Interestingly, the Western blotting results showed that these two stimulation modes demonstrated similar cTnT protein expression. We deduced that pulse stimulation decreased cell activity at 7 V/cm, and thus reduced cTnT synthesis. Finally, the immunostaining results demonstrated that 7 V/cm of pulse or constant DC both can align differentiated H9C2 cells due to their effects on cell orientation. Overall, our results suggested that PPy mediated electrical stimulation can promote cardiac myogenesis, and is potential for cardiac tissue engineering application
(DC) in electric fields of 1 or 7 V/cm to investigate the effects of
electrical stimulation mode as well as electrical fields on the activity,
morphology and differentiation of H9C2 cells. The MTT results showed
that pulse stimulation at 1 and 7 V/cm both promoted cell activity,
whereas constant DC demonstrated cell activity improvement only at 7
V/cm. Only 7 V/cm of pulse or constant DC can align H9C2 cells to
parallel to electrical field, and constant DC resulted in better alignment
than that of pulse group. The qPCR results showed that pulse and
constant at 7 V/cm both enhanced the upregulation of GATA4, a cardiac
transcription maker, in early stage of differentiation. Two mature cardiac
markers, cardiac muscle troponin T (cTnT) and α-actinin, were also
investigated during differentiation. The qPCR and Western blotting
results showed that the RNA and protein expression levels of α-actinin
were mainly dependent on electric field and independent of stimulation
mode. Both RNA and protein expression levels of cTnT also increased
with electric fields. However, the qPCR results indicated that pulse
stimulation up-regulated cTnT gene higher than that of the constant DC
group, especially at 7 V/cm. Interestingly, the Western blotting results
showed that these two stimulation modes demonstrated similar cTnT
protein expression. We deduced that pulse stimulation decreased cell
activity at 7 V/cm, and thus reduced cTnT synthesis. Finally, the
immunostaining results demonstrated that 7 V/cm of pulse or constant
DC both can align differentiated H9C2 cells due to their effects on cell
orientation. Overall, our results suggested that PPy mediated electrical
stimulation can promote cardiac myogenesis, and is potential for cardiac
tissue engineering application
關鍵字(中) ★ 心肌細胞
★ H9C2
★ 分化
★ 電刺激
關鍵字(英) ★ cardiomyoblast
★ H9C2
★ electrical stimulation
★ differentiation
論文目次 目錄
摘要.................................................................................................................................i
圖目錄...........................................................................................................................vi
表目錄........................................................................................................................ viii
第一章 緒論..................................................................................................................1
1-1 前言.....................................................................................................................1
第二章 文獻回顧..........................................................................................................4
2-1 心肌.....................................................................................................................4
2-1-1 心肌分化......................................................................................................6
2-1-2 心肌肌母細胞 H9C2...................................................................................8
2-2 組織工程.............................................................................................................9
2-2-1 心肌組織工程............................................................................................10
2-3 電刺激對心肌的影響.......................................................................................12
2-3-1 電刺激裝置................................................................................................14
2-3-2 電刺激促進心肌分化................................................................................19
2-3-3 電刺激促進心肌排列................................................................................23
2-3-4 電刺激的參數............................................................................................28
2-4 與心臟相關的基因...........................................................................................30
2-4-1 基因對心肌的影響....................................................................................31
2-4-2 電刺激對基因的影響................................................................................33
第三章 實驗藥品、儀器及方法................................................................................36
3-1 實驗藥品...........................................................................................................36
3-1-1 材料製備藥品............................................................................................36
3-1-2 生物實驗藥品............................................................................................37
3-2 實驗儀器...........................................................................................................44
3-3 實驗方法...........................................................................................................47
3-3-1 設計、組裝生物刺激裝置........................................................................47
3-3-2 細胞培養、繼代、冷凍及解凍................................................................49
v
3-3-3 分化血清配製及分化................................................................................52
3-3-4 控制區的配置、程式................................................................................53
3-3-5 脈衝訊號的量測........................................................................................54
3-3-6 電刺激對心肌肌管分化的影響................................................................56
3-3-7 物理刺激對生物活性的影響....................................................................59
3-3-8 即時聚合酶反應儀 (Real-time PCR).......................................................61
3-3-9 cTnT/α-actinin 免疫螢光染色分析 ...........................................................65
3-3-10 細胞排列分析..........................................................................................67
3-3-11 西方點墨 (Western blot) ........................................................................68
第四章 結果與討論....................................................................................................77
4-1 電刺激對 H9C2 肌母細胞的影響...................................................................77
4-1-1 MTT 生物活性分析...................................................................................77
4-1-2 細胞排列分析............................................................................................81
4-1-3 基因 qPCR 分析........................................................................................86
4-1-4 西方點墨(Western Blot)分析....................................................................91
4-1-5 免疫螢光染色(IF)分析 .............................................................................95
結論............................................................................................................................103
參考文獻....................................................................................................................105
參考文獻 參考文獻
1. Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N.,
Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M.,
Meigs, J., Moy, C., Nichol, G., O′Donnell, C.J., Roger, V., Rumsfeld, J., Sorlie, P.,
Steinberger, J., Thom, T., Wasserthiel-Smoller, S., Hong, Y., American Heart
Association Statistics, C., and Stroke Statistics, S., Heart disease and stroke
statistics--2007 update: a report from the American Heart Association
Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2007.
115(5): p. e69-e171.
2. Amro, N.R., Rasheed, O., Khdour, M., Qraqra, D., and Ghrayeb, F.A.,
Knowledge of Cardiovascular Disease among Undergraduate University
Students in Palestine. IISN, 2017. 7(4): p. 75-81.
3. Ponikowski, P., Anker, S.D., AlHabib, K.F., Cowie, M.R., Force, T.L., Hu, S.,
Jaarsma, T., Krum, H., Rastogi, V., Rohde, L.E., Samal, U.C., Shimokawa, H.,
Budi Siswanto, B., Sliwa, K., and Filippatos, G., Heart failure: preventing
disease and death worldwide. ESC Heart Failure, 2014. 1(1): p. 4-25.
4. Cubbon, R.M., Gale, C.P., Kearney, L.C., Schechter, C.B., Brooksby, W.P., Nolan,
J., Fox, K.A., Rajwani, A., Baig, W., Groves, D., Barlow, P., Fisher, A.C., Batin,
P.D., Kahn, M.B., Zaman, A.G., Shah, A.M., Byrne, J.A., Lindsay, S.J., Sapsford,
R.J., Wheatcroft, S.B., Witte, K.K., and Kearney, M.T., Changing characteristics
and mode of death associated with chronic heart failure caused by left
ventricular systolic dysfunction: a study across therapeutic eras. Circulation:
Heart Failure, 2011. 4(4): p. 396-403.
5. Nowbar, A.N., Gitto, M., Howard, J.P., Francis, D.P., and Al-Lamee, R.,
Mortality From Ischemic Heart Disease. Circulation: Cardiovascular Quality
Outcomes, 2019. 12(6): p. e005375-e005386.
6. Fuchs, F.D. and Whelton, P.K., High Blood Pressure and Cardiovascular Disease.
Hypertension: p. 1-8.
7. Dennis, R.G., Smith, B., Philp, A., Donnelly, K., and Baar, K., Bioreactors for
connective tissue engineering: design and monitoring innovations. Springer,
2010. 112: p. 39-79.
8. Patten, V.A., Chabaesele, I., Sishi, B., and Vuuren, D.v., Cardiomyocyte
differentiation: Experience and observations from 2 laboratories. SA Heart.
14(2): p. 96-107.
9. Anderson, P.A.W., Manring, A., Sommer, J.R., and Johnson, E.A., Cardiac
Muscle : An Attempt to Relate Structure to Function. Journal of Molecular and
106
Cellular Cardiology 1976. 8(2): p. 123-143.
10. van Weerd, J.H. and Christoffels, V.M., The formation and function of the
cardiac conduction system. Development, 2016. 143(2): p. 197-210.
11. Buckingham, M., Meilhac, S., and Zaffran, S., Building the mammalian heart
from two sources of myocardial cells. Nature Review Genetic, 2005. 6(11): p.
826-835.
12. Srivastava, D., Making or breaking the heart: from lineage determination to
morphogenesis. Cell, 2006. 126(6): p. 1037-1048.
13. Liao, H., Qi, Y., Ye, Y., Yue, P., Zhang, D., and Li, Y., Mechanotranduction
Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes.
Frontiers in Cell and Development Biology, 2020. 8: p. 625089-625106.
14. Kankeu, C., Clarke, K., Van Haver, D., Gevaert, K., Impens, F., Dittrich, A.,
Roderick, H.L., Passante, E., and Huber, H.J., Quantitative proteomics and
systems analysis of cultured H9C2 cardiomyoblasts during differentiation over
time supports a ′function follows form′ model of differentiation. Molecular
Omics, 2018. 14(3): p. 181-196.
15. Branco, A.F., Pereira, S.P., Gonzalez, S., Gusev, O., Rizvanov, A.A., and Oliveira,
P.J., Gene Expression Profiling of H9c2 Myoblast Differentiation towards a
Cardiac-Like Phenotype. PLOS ONE, 2015. 10(6): p. e0129303-e0129322.
16. Suhaeri, M., Subbiah, R., Van, S.Y., Du, P., Kim, I.G., Lee, K., and Park, K.,
Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix
microenvironment. Tissue Engineering Part A, 2015. 21(11-12): p. 1940-1951.
17. Pagano, M., Naviglio, S., Spina, A., Chiosi, E., Castoria, G., Romano, M.,
Sorrentino, A., Illiano, F., and Illiano, G., Differentiation of H9c2
cardiomyoblasts: The role of adenylate cyclase system. Journal of Cell
Physiology, 2004. 198(3): p. 408-416.
18. Saeedi, R., Saran, V.V., Wu, S.S., Kume, E.S., Paulson, K., Chan, A.P., Parsons,
H.L., Wambolt, R.B., Dyck, J.R., Brownsey, R.W., and Allard, M.F.,
AMP-activated protein kinase influences metabolic remodeling in H9c2 cells
hypertrophied by arginine vasopressin. AJP: Heart Circulatory Physiology,
2009. 296(6): p. H1822-H1832.
19. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B., Vital
imaging of H9c2 myoblasts exposed to
tert-butylhydroperoxide--characterization of morphological features of cell
death. BMC Cell Biology, 2007. 8(11): p. 1-15.
20. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B.,
Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53
activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol, 2009.
107
64(4): p. 811-827.
21. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B.,
Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear,
mitochondrial, and cytoskeletal targets. Cell Biology and Toxicol, 2009. 25(3):
p. 227-243.
22. Cselenyák, A., Pankotai, E., Horváth, E.M., Kiss, L., and Lacza, Z., Research
article Mesenchymal stem cells rescue cardiomyoblasts from cell death in an
in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biology,
2010. 11(1): p. 1-11.
23. Horvath, B., Mukhopadhyay, P., Hasko, G., and Pacher, P., The
endocannabinoid system and plant-derived cannabinoids in diabetes and
diabetic complications. The American Journal Pathology, 2012. 180(2): p.
432-442.
24. KIimes, B.W. and Brandt, B.L., Properties of a Clonal Muscle Cell Line from Rat
Heart Experimental Cell Research, 1976. 98(2): p. 367-381.
25. Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., and Lory, P.,
Modulation of L-type calcium channel expression during retinoic acid-induced
differentiation of H9C2 cardiac cells. The Journal of Biological Chemistry, 1999.
274(41): p. 29063-29070.
26. Oliveira, P., Santos, M.S., Holy, J., Wieckowski, M., and López, S.G., Impact of
H9c2 Cardiomyoblast Differentiation on Isoproterenol Toxicity: Different
Modulation of Signaling Pathways. Ana Filipa Roque Branco, 2012. 11(3): p.
1-162.
27. Howard, D., Buttery, L.D., Shakesheff, K.M., and Roberts, S.J., Tissue
engineering: strategies, stem cells and scaffolds. Journal of Anatomy, 2008.
213(1): p. 66-72.
28. Vacanti, J.P. and Langer, R., Tissue engineering: the design and fabrication of
living replacement devices for surgical reconstruction and transplantation.
The Lancet, 1999. 354(supp-S1): p. S32-S34.
29. Carrier, R.L., Rupnick, M., Langer, R., Schoen, F.J., Freed, L.E., and
Vunjak-Novakovic, G., Perfusion Improves Tissue Architecture of Engineered
Cardiac Muscle. TISSUE ENGINEERING, 2002. 8(2): p. 175-188.
30. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F.,
Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T., Tissue
engineering of a differentiated cardiac muscle construct. Circulaton Result,
2002. 90(2): p. 223-230.
31. Feng, Z., Matsumoto, T., Nomura, Y., and Nakamura, T., An Electro-Tensile
Bioreactor for 3-D Culturing of Cardiomyocytes. IEEE ENGINEERING IN
108
MEDICINE AND BIOLOGY MAGAZINE, 2005. 24(4): p. 73-79.
32. Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y.,
Langer, R., Freed, L.E., and Vunjak-Novakovic, G., Pre-treatment of synthetic
elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.
Journal of Biomedical Materials Research Part A, 2008. 86(3): p. 713-724.
33. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Vacanti, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129–18134.
34. Pietronave, S., Zamperone, A., Oltolina, F., Colangelo, D., Follenzi, A., Novelli,
E., Diena, M., Pavesi, A., Consolo, F., Fiore, G.B., Soncini, M., and Prat, M.,
Monophasic and biphasic electrical stimulation induces a precardiac
differentiation in progenitor cells isolated from human heart. Stem Cells and
Development, 2014. 23(8): p. 888-898.
35. Stoppel, W.L., Kaplan, D.L., and Black 3rd, L.D., Electrical and mechanical
stimulation of cardiac cells and tissue constructs. Advanced Drug Delivery
Reviews, 2015. 96: p. 1-91.
36. Curtis, M.W. and Russell, B., Cardiac tissue engineering. Journal of
Cardiovascular Nursing, 2009. 24(2): p. 87-92.
37. Hart, R.A. and Gandhi, O.P., Comparison of cardiac-induced endogenous fields
and power frequency induced exogenous fields in an anatomical model of the
human body. Physics in Medicine Biology, 1998. 43(10): p. 3083–3099.
38. Cameron, I.L., Hardman, W.E., Winters, W.D., Zimmerman, S., and
Zimmerman, A.M., Environmental Magnetic Fields: Influences on Early
Embryogenesis. Journal of Cellular Biochemistry, 1993. 51(4): p. 417-425.
39. Bian, W. and Tung, L., Structure-related initiation of reentry by rapid pacing in
monolayers of cardiac cells. Circulation Research, 2006. 98(4): p. e29-e38.
40. Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A., and Okano, T., Electrical
coupling of cardiomyocyte sheets occurs rapidly via functional gap junction
formation. Biomaterials, 2006. 27(27): p. 4765-4774.
41. Xia, Y., Buja, L.M., and McMillin, J.B., Activation of the cytochrome c gene by
electrical stimulation in neonatal rat cardiac myocytes. Role of NRF-1 and
c-Jun. Journal of Biological Chemistry, 1998. 273(20): p. 12593-12608.
42. Xia, Y., Buja, L.M., and McMillin, J.B., Change in expression of heart carnitine
palmitoyltransferase I isoforms with electrical stimulation of cultured rat
neonatal cardiac myocytes. Journal of Biological Chemistry, 1996. 271(20): p.
12082-12107.
43. Tandon, N., Cannizzaro, C., Chao, P.H., Maidhof, R., Marsano, A., Au, H.T.,
109
Radisic, M., and Vunjak-Novakovic, G., Electrical stimulation systems for
cardiac tissue engineering. Nature protocols, 2009. 4(2): p. 155-173.
44. Abilez, O., Benharash, P., Miyamoto, E., Gale, A., Xu, C., and Zarins, C.K., P19
Progenitor Cells Progress to Organized Contracting Myocytes After Chemical
and Electrical Stimulation: Implications for Vascular Tissue Engineering.
Journal of Endovascular Therapy, 2006. 13(3): p. 377–388.
45. Wang, Y., Zhang, W., Huang, L., Ito, Y., Wang, Z., Shi, X., Wei, Y., Jing, X., and
Zhang, P., Intracellular calcium ions and morphological changes of cardiac
myoblasts response to an intelligent biodegradable conducting copolymer.
ELSEVIER, 2018. 90: p. 168-179.
46. Zengo, A.N., Bassett, C.A.L., Prountzos, G., Pawluk, R.J., and Pilla, A., In Vivo
Effects of Direct Current in the Mandible. 1976: p. 383-390.
47. Chan, Y.C., Ting, S., Lee, Y.K., Ng, K.M., Zhang, J., Chen, Z., Siu, C.W., Oh, S.K.,
and Tse, H.F., Electrical stimulation promotes maturation of cardiomyocytes
derived from human embryonic stem cells. Journal of Cardiovascular
Translational Research, 2013. 6(6): p. 989-999.
48. Ganji, Y., Li, Q., Quabius, E.S., Bottner, M., Selhuber-Unkel, C., and Kasra, M.,
Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite
scaffolds under electrical stimulation. ELSEVIER, 2016. 59: p. 10-18.
49. Hsiao, C.W., Bai, M.Y., Chang, Y., Chung, M.F., Lee, T.Y., Wu, C.T., Maiti, B., Liao,
Z.X., Li, R.K., and Sung, H.W., Electrical coupling of isolated cardiomyocyte
clusters grown on aligned conductive nanofibrous meshes for their
synchronized beating. ELSEVIER, 2013. 34(4): p. 1063-1072.
50. Moon, S.H., Cho, Y.W., Shim, H.E., Choi, J.H., Jung, C.H., Hwang, I.T., and Kang,
S.W., Electrically stimulable indium tin oxide plate for long-term in vitro
cardiomyocyte culture. Biomaterials research, 2020. 24: p. 1-10.
51. Sperelakis, N. and Hoshiko, T., Electrical Impedance of Cardiac Muscle. 1961.
9(6): p. 1280-1283.
52. Li, C., Hsu, Y.T., and Hu, W.W., The Regulation of Osteogenesis Using
Electroactive Polypyrrole Films. Polymers (Basel), 2016. 8(7): p. 1-12.
53. Genovese, J.A., Spadaccio, C., Chachques, E., Schussler, O., Carpentier, A.,
Chachques, J.C., and Patel, A.N., Cardiac pre-differentiation of human
mesenchymal stem cells by electrostimulation. Frontiers in Bioscience, 2009.
14: p. 2996-3002.
54. Pavesi, A., Soncini, M., Zamperone, A., Pietronave, S., Medico, E., Redaelli, A.,
Prat, M., and Fiore, G.B., Electrical conditioning of adipose-derived stem cells
in a multi-chamber culture platform. Biotechnol Bioeng, 2014. 111(7): p.
1452-1463.
110
55. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Xi bao yu fen zi mian yi xue za
zhi= Chinese journal of cellular and molecular immunology, 2013. 29(4): p.
337-340.
56. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H.,
Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K.,
Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H.,
and Kondo, T., Electrical stimulation modulates fate determination of
differentiating embryonic stem cells. Stem Cells, 2007. 25(3): p. 562-570.
57. Sauer, H., Rahim, G., Hescheler, J., and Wartenberg, M., Role of reactive
oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte
di¡erentiation of embryonic stem cells. FEBS, 2000. 476(3): p. 218-223.
58. Li, J., Stouffs, M., Serrander, L., Banf, B., Bettiol, E., Charnay, Y., Steger, K.,
Krause, K., and Jaconi, M.E., The NADPH Oxidase NOX4 Drives Cardiac
Differentiation: Role in Regulating Cardiac Transcription Factors and MAP
Kinase Activation. Molecular Cell Biology, 2006. 17(9): p. 3978–3988.
59. Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N.,
and Vunjak-Novakovic, G., Electrical stimulation of human embryonic stem
cells: cardiac differentiation and the generation of reactive oxygen species.
ELSEVIER, 2008. 315(20): p. 3611-3619.
60. Chen, C., Bai, X., Ding, Y., and Lee, I.S., Electrical stimulation as a novel tool for
regulating cell behavior in tissue engineering. Biomaterials Research, 2019.
23(1): p. 1-12.
61. Au, H.T., Cheng, I., Chowdhury, M.F., and Radisic, M., Interactive effects of
surface topography and pulsatile electrical field stimulation on orientation
and elongation of fibroblasts and cardiomyocytes. Biomaterials research,
2007. 28(29): p. 4277-4293.
62. Radisic, M., Park, M., Shing, H., Consi, T., Schoen, F.J., Langer, J., Freed, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129-18134.
63. Radisic, M., Park, M., Shing, H., Consi, T., Schoen, F.J., Langer, J., Freed, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129–18134.
64. Tandon, N., Marsano, A., Maidhof, R., Numata, K., Montouri-Sorrentino, C.,
Cannizzaro, C., Voldman, J., and Vunjak-Novakovic, G., Surface-patterned
electrode bioreactor for electrical stimulation. Lab on a Chip, 2010. 10(6): p.
111
692-700.
65. Loe, M.J. and Edwards, W.D., A light-hearted look at a lion-hearted organ (or,
a perspective from three standard deviations beyond the norm). Part 1 (of
two parts). ELSEVIER, 2004. 13(5): p. 282-292.
66. Song, B., Gu, Y., Pu, J., Reid, B., Zhao, Z., and Zhao, M., Application of direct
current electric fields to cells and tissues in vitro and modulation of wound
electric field in vivo. Nat Protoc, 2007. 2(6): p. 1479-1489.
67. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Chinese journal of cellular and
molecular immunology, 2013. 29(4): p. 337-340.
68. Yilbas, A.E., Hamilton, A., Wang, Y., Mach, H., Lacroix, N., Davis, D.R., Chen, J.,
and Li, Q., Activation of GATA4 gene expression at the early stage of cardiac
specification. Frontiers in chemistry, 2014. 2: p. 1-12.
69. Rossi, J., M., Dunn, N.R., Hogan, B.L.M., and Zaret, K.S., Distinct mesodermal
signals, including BMPs from the septum transversum mesenchyme, are
required in combination for hepatogenesis from the endoderm. GENES &
DEVELOPMENT, 2022. 15(15): p. 1998–2009.
70. Morin, S., Charron, F., Robitaille, L., and Nemer, M., GATA-dependent
recruitment of MEF2 preteinss to target promoters. The EMBO Journal, 2000.
19(9): p. 2046-2055.
71. Akazawa, H. and Komuro, I., Cardiac transcription factor Csx/Nkx2-5: Its role
in cardiac development and diseases. ELSEVIER, 2005. 107(2): p. 252-268.
72. Durocher, D., Charron, F., Warren, R., Schwartz, R.J., and Nemer, M., The
cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. The
EMBO Journal, 1997. 16(18): p. 5687-5696.
73. Li, H., Zuo, S., He, Z., Yang, Y., Pasha, Z., Wang, Y., and Xu, M., Paracrine factors
released by GATA-4 overexpressed mesenchymal stem cells increase
angiogenesis and cell survival. Physiology-Heart and Circulatory Physiology,
2010. 299(6): p. H1772-H1781.
74. Behrens, A.N., Iacovino, M., Lohr, J.L., Ren, Y., Zierold, C., Harvey, R.P., Kyba,
M., Garry, D.J., and Martin, C.M., Nkx2-5 mediates differential cardiac
differentiation through interaction with Hoxa10. Stem cells and development,
2013. 22(15): p. 2211-2220.
75. Tanaka, M., Wechsler, S.B., Lee, I.W., Yamasaki, N., Lawitts, J.A., and Izumo, S.,
Complex modular cis-acting elements regulate expression of the cardiac
specifying homeobox gene Csx/Nkx2.5. Development, 1999. 126(7): p.
1439-1450.
76. Loyons, I., PArsons, L., M., Hartley, L., Li, R., Andrew, J.E., Robb, L., and Harvey,
112
R.P., Myogenic and morphogenetic defects in the heart tubes of murlne
embryos lacking the homeo box gene Nkx2-5. GENES & DEVELOPMENT, 2022.
9(3): p. 1654-1666.
77. Veen, T.A.B.V., Rijen, H.V.M.V., and Opthof, T., Cardiac gap junction channels:
modulation of expression and channel properties. ELSEVIER, 2001. 51(2): p.
217-229.
78. Fromaget, C., Aoumari, A.E., and Gros , D., Distribution pattern of connexin 43,
a gap junctional protein, during the differentiation of mouse heart myocytes.
Differentiation, 1992. 51(1): p. 9-20.
79. Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazak, Y., Nagai, R., and Komuro, I.,
Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte
differentiation. Nature genetics 2001. 28(3): p. 276-280.
80. Xia, Y., McMillin, J.B., Lewis, A., Moore, M., Zhu, W.G., Williams, R.S., and
Kellems, R.E., Electrical stimulation of neonatal cardiac myocytes activates the
NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate
synthetase 1 gene. Biological Chemistry, 2000. 275(3): p. 1855-1863.
81. Hernandez, D., Millard, R., Sivakumaran, P., Wong, R.C.B., Crombie, D.E.,
Hewitt, A.W., Liang, H., Hung, S.S., Pebay, A., Shepherd, R.K., Dusting, G.J., and
Lim, S.Y., Electrical Stimulation Promotes Cardiac Differentiation of Human
Induced Pluripotent Stem Cells. Stem Cells International, 2016. 2016: p. 1-12.
82. Ma, R., Liang, J., Huang, W., Guo, L., Cai, W., Wang, L., Paul, C., Yang, H.T., Kim,
H.W., and Wang, Y., Electrical Stimulation Enhances Cardiac Differentiation of
Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy.
Antioxid Redox Signal, 2018. 28(5): p. 371-384.
83. Jia, X., Zhang, L., and Mao, X., S-propranolol protected H9C2 cells from
ischemia/reperfusion-induced apoptosis via downregultion of RACK1 Gene.
Int J Clin Exp Pathol, 2015. 8(9): p. 10335-10344.
84. Lu, T., Pelacho, B., Hao, H., Luo, M., Zhu, J., Verfaillie, C.M., Tian, J., and Liu, Z.,
Cardiomyocyte differentiation of rat bone marrow multipotent progenitor
cells is associated with downregulation of Oct-4 expression. Tissue
Engineering Part A, 2010. 16(10): p. 3111-3117.
85. Aragon, A., Cebro-Marquez, M., Perez, E., Pazos, A., Lage, R.,
Gonzalez-Juanatey, J.R., Moscoso, I., Bao-Varela, C., and Nieto, D.,
Bioelectronics-on-a-chip for cardio myoblast proliferation enhancement using
electric field stimulation. Biomaterials research, 2020. 24(1): p. 1-10.
86. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Chinese journal of cellular and
molecular immunology, 2012. 29(4): p. 337-340.
113
87. Bahuguna, A., Khan, I., Bajpai, V.K., and Kang, S.C., MTT assay to evaluate the
cytotoxic potential of a drug. Pharmacology, 2017. 12(2): p. 115-118.
88. Patten, V.A., Chabaesele, I., Sishi, B., and Vuuren, D.v., Cardiomyocyte
differentiation: Experience and observations from 2 laboratories. SA heart,
2017. 14(2): p. 96-107.
89. Batista Napotnik, T., Polajzer, T., and Miklavcic, D., Cell death due to
electroporation - A review. Bioelectrochemistry, 2021. 141: p. 1-18.
90. Kotnik, T., Rems, L., Tarek, M., and Miklavcic, D., Membrane Electroporation
and Electropermeabilization: Mechanisms and Models. Annual Review of
Biophysics, 2019. 48(1): p. 63-91.
91. Weaver, J.C., Smith, K.C., Esser, A.T., Son, R.S., and Gowrishankar, T.R., A brief
overview of electroporation pulse strength-duration space: a region where
additional intracellular effects are expected. Bioelectrochemistry, 2012. 87: p.
236-243.
92. Chen, G.Y., Pang, D.W.P., Hwang, S.M., Tuan, H.Y., and Hu, Y.C., A
graphene-based platform for induced pluripotent stem cells culture and
differentiation. Biomaterials, 2012. 33(2): p. 418-427.
93. Flaim, C.J., Chien, S., and Bhatia, S.N., An extracellular matrix microarray for
probing cellular differentiation. Nature Methods, 2005. 2(2): p. 119-125.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2022-4-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明