參考文獻 |
參考文獻
1. Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N.,
Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M.,
Meigs, J., Moy, C., Nichol, G., O′Donnell, C.J., Roger, V., Rumsfeld, J., Sorlie, P.,
Steinberger, J., Thom, T., Wasserthiel-Smoller, S., Hong, Y., American Heart
Association Statistics, C., and Stroke Statistics, S., Heart disease and stroke
statistics--2007 update: a report from the American Heart Association
Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2007.
115(5): p. e69-e171.
2. Amro, N.R., Rasheed, O., Khdour, M., Qraqra, D., and Ghrayeb, F.A.,
Knowledge of Cardiovascular Disease among Undergraduate University
Students in Palestine. IISN, 2017. 7(4): p. 75-81.
3. Ponikowski, P., Anker, S.D., AlHabib, K.F., Cowie, M.R., Force, T.L., Hu, S.,
Jaarsma, T., Krum, H., Rastogi, V., Rohde, L.E., Samal, U.C., Shimokawa, H.,
Budi Siswanto, B., Sliwa, K., and Filippatos, G., Heart failure: preventing
disease and death worldwide. ESC Heart Failure, 2014. 1(1): p. 4-25.
4. Cubbon, R.M., Gale, C.P., Kearney, L.C., Schechter, C.B., Brooksby, W.P., Nolan,
J., Fox, K.A., Rajwani, A., Baig, W., Groves, D., Barlow, P., Fisher, A.C., Batin,
P.D., Kahn, M.B., Zaman, A.G., Shah, A.M., Byrne, J.A., Lindsay, S.J., Sapsford,
R.J., Wheatcroft, S.B., Witte, K.K., and Kearney, M.T., Changing characteristics
and mode of death associated with chronic heart failure caused by left
ventricular systolic dysfunction: a study across therapeutic eras. Circulation:
Heart Failure, 2011. 4(4): p. 396-403.
5. Nowbar, A.N., Gitto, M., Howard, J.P., Francis, D.P., and Al-Lamee, R.,
Mortality From Ischemic Heart Disease. Circulation: Cardiovascular Quality
Outcomes, 2019. 12(6): p. e005375-e005386.
6. Fuchs, F.D. and Whelton, P.K., High Blood Pressure and Cardiovascular Disease.
Hypertension: p. 1-8.
7. Dennis, R.G., Smith, B., Philp, A., Donnelly, K., and Baar, K., Bioreactors for
connective tissue engineering: design and monitoring innovations. Springer,
2010. 112: p. 39-79.
8. Patten, V.A., Chabaesele, I., Sishi, B., and Vuuren, D.v., Cardiomyocyte
differentiation: Experience and observations from 2 laboratories. SA Heart.
14(2): p. 96-107.
9. Anderson, P.A.W., Manring, A., Sommer, J.R., and Johnson, E.A., Cardiac
Muscle : An Attempt to Relate Structure to Function. Journal of Molecular and
106
Cellular Cardiology 1976. 8(2): p. 123-143.
10. van Weerd, J.H. and Christoffels, V.M., The formation and function of the
cardiac conduction system. Development, 2016. 143(2): p. 197-210.
11. Buckingham, M., Meilhac, S., and Zaffran, S., Building the mammalian heart
from two sources of myocardial cells. Nature Review Genetic, 2005. 6(11): p.
826-835.
12. Srivastava, D., Making or breaking the heart: from lineage determination to
morphogenesis. Cell, 2006. 126(6): p. 1037-1048.
13. Liao, H., Qi, Y., Ye, Y., Yue, P., Zhang, D., and Li, Y., Mechanotranduction
Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes.
Frontiers in Cell and Development Biology, 2020. 8: p. 625089-625106.
14. Kankeu, C., Clarke, K., Van Haver, D., Gevaert, K., Impens, F., Dittrich, A.,
Roderick, H.L., Passante, E., and Huber, H.J., Quantitative proteomics and
systems analysis of cultured H9C2 cardiomyoblasts during differentiation over
time supports a ′function follows form′ model of differentiation. Molecular
Omics, 2018. 14(3): p. 181-196.
15. Branco, A.F., Pereira, S.P., Gonzalez, S., Gusev, O., Rizvanov, A.A., and Oliveira,
P.J., Gene Expression Profiling of H9c2 Myoblast Differentiation towards a
Cardiac-Like Phenotype. PLOS ONE, 2015. 10(6): p. e0129303-e0129322.
16. Suhaeri, M., Subbiah, R., Van, S.Y., Du, P., Kim, I.G., Lee, K., and Park, K.,
Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix
microenvironment. Tissue Engineering Part A, 2015. 21(11-12): p. 1940-1951.
17. Pagano, M., Naviglio, S., Spina, A., Chiosi, E., Castoria, G., Romano, M.,
Sorrentino, A., Illiano, F., and Illiano, G., Differentiation of H9c2
cardiomyoblasts: The role of adenylate cyclase system. Journal of Cell
Physiology, 2004. 198(3): p. 408-416.
18. Saeedi, R., Saran, V.V., Wu, S.S., Kume, E.S., Paulson, K., Chan, A.P., Parsons,
H.L., Wambolt, R.B., Dyck, J.R., Brownsey, R.W., and Allard, M.F.,
AMP-activated protein kinase influences metabolic remodeling in H9c2 cells
hypertrophied by arginine vasopressin. AJP: Heart Circulatory Physiology,
2009. 296(6): p. H1822-H1832.
19. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B., Vital
imaging of H9c2 myoblasts exposed to
tert-butylhydroperoxide--characterization of morphological features of cell
death. BMC Cell Biology, 2007. 8(11): p. 1-15.
20. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B.,
Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53
activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol, 2009.
107
64(4): p. 811-827.
21. Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B.,
Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear,
mitochondrial, and cytoskeletal targets. Cell Biology and Toxicol, 2009. 25(3):
p. 227-243.
22. Cselenyák, A., Pankotai, E., Horváth, E.M., Kiss, L., and Lacza, Z., Research
article Mesenchymal stem cells rescue cardiomyoblasts from cell death in an
in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biology,
2010. 11(1): p. 1-11.
23. Horvath, B., Mukhopadhyay, P., Hasko, G., and Pacher, P., The
endocannabinoid system and plant-derived cannabinoids in diabetes and
diabetic complications. The American Journal Pathology, 2012. 180(2): p.
432-442.
24. KIimes, B.W. and Brandt, B.L., Properties of a Clonal Muscle Cell Line from Rat
Heart Experimental Cell Research, 1976. 98(2): p. 367-381.
25. Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., and Lory, P.,
Modulation of L-type calcium channel expression during retinoic acid-induced
differentiation of H9C2 cardiac cells. The Journal of Biological Chemistry, 1999.
274(41): p. 29063-29070.
26. Oliveira, P., Santos, M.S., Holy, J., Wieckowski, M., and López, S.G., Impact of
H9c2 Cardiomyoblast Differentiation on Isoproterenol Toxicity: Different
Modulation of Signaling Pathways. Ana Filipa Roque Branco, 2012. 11(3): p.
1-162.
27. Howard, D., Buttery, L.D., Shakesheff, K.M., and Roberts, S.J., Tissue
engineering: strategies, stem cells and scaffolds. Journal of Anatomy, 2008.
213(1): p. 66-72.
28. Vacanti, J.P. and Langer, R., Tissue engineering: the design and fabrication of
living replacement devices for surgical reconstruction and transplantation.
The Lancet, 1999. 354(supp-S1): p. S32-S34.
29. Carrier, R.L., Rupnick, M., Langer, R., Schoen, F.J., Freed, L.E., and
Vunjak-Novakovic, G., Perfusion Improves Tissue Architecture of Engineered
Cardiac Muscle. TISSUE ENGINEERING, 2002. 8(2): p. 175-188.
30. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F.,
Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T., Tissue
engineering of a differentiated cardiac muscle construct. Circulaton Result,
2002. 90(2): p. 223-230.
31. Feng, Z., Matsumoto, T., Nomura, Y., and Nakamura, T., An Electro-Tensile
Bioreactor for 3-D Culturing of Cardiomyocytes. IEEE ENGINEERING IN
108
MEDICINE AND BIOLOGY MAGAZINE, 2005. 24(4): p. 73-79.
32. Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y.,
Langer, R., Freed, L.E., and Vunjak-Novakovic, G., Pre-treatment of synthetic
elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.
Journal of Biomedical Materials Research Part A, 2008. 86(3): p. 713-724.
33. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Vacanti, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129–18134.
34. Pietronave, S., Zamperone, A., Oltolina, F., Colangelo, D., Follenzi, A., Novelli,
E., Diena, M., Pavesi, A., Consolo, F., Fiore, G.B., Soncini, M., and Prat, M.,
Monophasic and biphasic electrical stimulation induces a precardiac
differentiation in progenitor cells isolated from human heart. Stem Cells and
Development, 2014. 23(8): p. 888-898.
35. Stoppel, W.L., Kaplan, D.L., and Black 3rd, L.D., Electrical and mechanical
stimulation of cardiac cells and tissue constructs. Advanced Drug Delivery
Reviews, 2015. 96: p. 1-91.
36. Curtis, M.W. and Russell, B., Cardiac tissue engineering. Journal of
Cardiovascular Nursing, 2009. 24(2): p. 87-92.
37. Hart, R.A. and Gandhi, O.P., Comparison of cardiac-induced endogenous fields
and power frequency induced exogenous fields in an anatomical model of the
human body. Physics in Medicine Biology, 1998. 43(10): p. 3083–3099.
38. Cameron, I.L., Hardman, W.E., Winters, W.D., Zimmerman, S., and
Zimmerman, A.M., Environmental Magnetic Fields: Influences on Early
Embryogenesis. Journal of Cellular Biochemistry, 1993. 51(4): p. 417-425.
39. Bian, W. and Tung, L., Structure-related initiation of reentry by rapid pacing in
monolayers of cardiac cells. Circulation Research, 2006. 98(4): p. e29-e38.
40. Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A., and Okano, T., Electrical
coupling of cardiomyocyte sheets occurs rapidly via functional gap junction
formation. Biomaterials, 2006. 27(27): p. 4765-4774.
41. Xia, Y., Buja, L.M., and McMillin, J.B., Activation of the cytochrome c gene by
electrical stimulation in neonatal rat cardiac myocytes. Role of NRF-1 and
c-Jun. Journal of Biological Chemistry, 1998. 273(20): p. 12593-12608.
42. Xia, Y., Buja, L.M., and McMillin, J.B., Change in expression of heart carnitine
palmitoyltransferase I isoforms with electrical stimulation of cultured rat
neonatal cardiac myocytes. Journal of Biological Chemistry, 1996. 271(20): p.
12082-12107.
43. Tandon, N., Cannizzaro, C., Chao, P.H., Maidhof, R., Marsano, A., Au, H.T.,
109
Radisic, M., and Vunjak-Novakovic, G., Electrical stimulation systems for
cardiac tissue engineering. Nature protocols, 2009. 4(2): p. 155-173.
44. Abilez, O., Benharash, P., Miyamoto, E., Gale, A., Xu, C., and Zarins, C.K., P19
Progenitor Cells Progress to Organized Contracting Myocytes After Chemical
and Electrical Stimulation: Implications for Vascular Tissue Engineering.
Journal of Endovascular Therapy, 2006. 13(3): p. 377–388.
45. Wang, Y., Zhang, W., Huang, L., Ito, Y., Wang, Z., Shi, X., Wei, Y., Jing, X., and
Zhang, P., Intracellular calcium ions and morphological changes of cardiac
myoblasts response to an intelligent biodegradable conducting copolymer.
ELSEVIER, 2018. 90: p. 168-179.
46. Zengo, A.N., Bassett, C.A.L., Prountzos, G., Pawluk, R.J., and Pilla, A., In Vivo
Effects of Direct Current in the Mandible. 1976: p. 383-390.
47. Chan, Y.C., Ting, S., Lee, Y.K., Ng, K.M., Zhang, J., Chen, Z., Siu, C.W., Oh, S.K.,
and Tse, H.F., Electrical stimulation promotes maturation of cardiomyocytes
derived from human embryonic stem cells. Journal of Cardiovascular
Translational Research, 2013. 6(6): p. 989-999.
48. Ganji, Y., Li, Q., Quabius, E.S., Bottner, M., Selhuber-Unkel, C., and Kasra, M.,
Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite
scaffolds under electrical stimulation. ELSEVIER, 2016. 59: p. 10-18.
49. Hsiao, C.W., Bai, M.Y., Chang, Y., Chung, M.F., Lee, T.Y., Wu, C.T., Maiti, B., Liao,
Z.X., Li, R.K., and Sung, H.W., Electrical coupling of isolated cardiomyocyte
clusters grown on aligned conductive nanofibrous meshes for their
synchronized beating. ELSEVIER, 2013. 34(4): p. 1063-1072.
50. Moon, S.H., Cho, Y.W., Shim, H.E., Choi, J.H., Jung, C.H., Hwang, I.T., and Kang,
S.W., Electrically stimulable indium tin oxide plate for long-term in vitro
cardiomyocyte culture. Biomaterials research, 2020. 24: p. 1-10.
51. Sperelakis, N. and Hoshiko, T., Electrical Impedance of Cardiac Muscle. 1961.
9(6): p. 1280-1283.
52. Li, C., Hsu, Y.T., and Hu, W.W., The Regulation of Osteogenesis Using
Electroactive Polypyrrole Films. Polymers (Basel), 2016. 8(7): p. 1-12.
53. Genovese, J.A., Spadaccio, C., Chachques, E., Schussler, O., Carpentier, A.,
Chachques, J.C., and Patel, A.N., Cardiac pre-differentiation of human
mesenchymal stem cells by electrostimulation. Frontiers in Bioscience, 2009.
14: p. 2996-3002.
54. Pavesi, A., Soncini, M., Zamperone, A., Pietronave, S., Medico, E., Redaelli, A.,
Prat, M., and Fiore, G.B., Electrical conditioning of adipose-derived stem cells
in a multi-chamber culture platform. Biotechnol Bioeng, 2014. 111(7): p.
1452-1463.
110
55. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Xi bao yu fen zi mian yi xue za
zhi= Chinese journal of cellular and molecular immunology, 2013. 29(4): p.
337-340.
56. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H.,
Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K.,
Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H.,
and Kondo, T., Electrical stimulation modulates fate determination of
differentiating embryonic stem cells. Stem Cells, 2007. 25(3): p. 562-570.
57. Sauer, H., Rahim, G., Hescheler, J., and Wartenberg, M., Role of reactive
oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte
di¡erentiation of embryonic stem cells. FEBS, 2000. 476(3): p. 218-223.
58. Li, J., Stouffs, M., Serrander, L., Banf, B., Bettiol, E., Charnay, Y., Steger, K.,
Krause, K., and Jaconi, M.E., The NADPH Oxidase NOX4 Drives Cardiac
Differentiation: Role in Regulating Cardiac Transcription Factors and MAP
Kinase Activation. Molecular Cell Biology, 2006. 17(9): p. 3978–3988.
59. Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N.,
and Vunjak-Novakovic, G., Electrical stimulation of human embryonic stem
cells: cardiac differentiation and the generation of reactive oxygen species.
ELSEVIER, 2008. 315(20): p. 3611-3619.
60. Chen, C., Bai, X., Ding, Y., and Lee, I.S., Electrical stimulation as a novel tool for
regulating cell behavior in tissue engineering. Biomaterials Research, 2019.
23(1): p. 1-12.
61. Au, H.T., Cheng, I., Chowdhury, M.F., and Radisic, M., Interactive effects of
surface topography and pulsatile electrical field stimulation on orientation
and elongation of fibroblasts and cardiomyocytes. Biomaterials research,
2007. 28(29): p. 4277-4293.
62. Radisic, M., Park, M., Shing, H., Consi, T., Schoen, F.J., Langer, J., Freed, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129-18134.
63. Radisic, M., Park, M., Shing, H., Consi, T., Schoen, F.J., Langer, J., Freed, L.E.,
and Vunjak-Novakovic, G., Functional assembly of engineered myocardium by
electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS, 2004.
101(52): p. 18129–18134.
64. Tandon, N., Marsano, A., Maidhof, R., Numata, K., Montouri-Sorrentino, C.,
Cannizzaro, C., Voldman, J., and Vunjak-Novakovic, G., Surface-patterned
electrode bioreactor for electrical stimulation. Lab on a Chip, 2010. 10(6): p.
111
692-700.
65. Loe, M.J. and Edwards, W.D., A light-hearted look at a lion-hearted organ (or,
a perspective from three standard deviations beyond the norm). Part 1 (of
two parts). ELSEVIER, 2004. 13(5): p. 282-292.
66. Song, B., Gu, Y., Pu, J., Reid, B., Zhao, Z., and Zhao, M., Application of direct
current electric fields to cells and tissues in vitro and modulation of wound
electric field in vivo. Nat Protoc, 2007. 2(6): p. 1479-1489.
67. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Chinese journal of cellular and
molecular immunology, 2013. 29(4): p. 337-340.
68. Yilbas, A.E., Hamilton, A., Wang, Y., Mach, H., Lacroix, N., Davis, D.R., Chen, J.,
and Li, Q., Activation of GATA4 gene expression at the early stage of cardiac
specification. Frontiers in chemistry, 2014. 2: p. 1-12.
69. Rossi, J., M., Dunn, N.R., Hogan, B.L.M., and Zaret, K.S., Distinct mesodermal
signals, including BMPs from the septum transversum mesenchyme, are
required in combination for hepatogenesis from the endoderm. GENES &
DEVELOPMENT, 2022. 15(15): p. 1998–2009.
70. Morin, S., Charron, F., Robitaille, L., and Nemer, M., GATA-dependent
recruitment of MEF2 preteinss to target promoters. The EMBO Journal, 2000.
19(9): p. 2046-2055.
71. Akazawa, H. and Komuro, I., Cardiac transcription factor Csx/Nkx2-5: Its role
in cardiac development and diseases. ELSEVIER, 2005. 107(2): p. 252-268.
72. Durocher, D., Charron, F., Warren, R., Schwartz, R.J., and Nemer, M., The
cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. The
EMBO Journal, 1997. 16(18): p. 5687-5696.
73. Li, H., Zuo, S., He, Z., Yang, Y., Pasha, Z., Wang, Y., and Xu, M., Paracrine factors
released by GATA-4 overexpressed mesenchymal stem cells increase
angiogenesis and cell survival. Physiology-Heart and Circulatory Physiology,
2010. 299(6): p. H1772-H1781.
74. Behrens, A.N., Iacovino, M., Lohr, J.L., Ren, Y., Zierold, C., Harvey, R.P., Kyba,
M., Garry, D.J., and Martin, C.M., Nkx2-5 mediates differential cardiac
differentiation through interaction with Hoxa10. Stem cells and development,
2013. 22(15): p. 2211-2220.
75. Tanaka, M., Wechsler, S.B., Lee, I.W., Yamasaki, N., Lawitts, J.A., and Izumo, S.,
Complex modular cis-acting elements regulate expression of the cardiac
specifying homeobox gene Csx/Nkx2.5. Development, 1999. 126(7): p.
1439-1450.
76. Loyons, I., PArsons, L., M., Hartley, L., Li, R., Andrew, J.E., Robb, L., and Harvey,
112
R.P., Myogenic and morphogenetic defects in the heart tubes of murlne
embryos lacking the homeo box gene Nkx2-5. GENES & DEVELOPMENT, 2022.
9(3): p. 1654-1666.
77. Veen, T.A.B.V., Rijen, H.V.M.V., and Opthof, T., Cardiac gap junction channels:
modulation of expression and channel properties. ELSEVIER, 2001. 51(2): p.
217-229.
78. Fromaget, C., Aoumari, A.E., and Gros , D., Distribution pattern of connexin 43,
a gap junctional protein, during the differentiation of mouse heart myocytes.
Differentiation, 1992. 51(1): p. 9-20.
79. Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazak, Y., Nagai, R., and Komuro, I.,
Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte
differentiation. Nature genetics 2001. 28(3): p. 276-280.
80. Xia, Y., McMillin, J.B., Lewis, A., Moore, M., Zhu, W.G., Williams, R.S., and
Kellems, R.E., Electrical stimulation of neonatal cardiac myocytes activates the
NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate
synthetase 1 gene. Biological Chemistry, 2000. 275(3): p. 1855-1863.
81. Hernandez, D., Millard, R., Sivakumaran, P., Wong, R.C.B., Crombie, D.E.,
Hewitt, A.W., Liang, H., Hung, S.S., Pebay, A., Shepherd, R.K., Dusting, G.J., and
Lim, S.Y., Electrical Stimulation Promotes Cardiac Differentiation of Human
Induced Pluripotent Stem Cells. Stem Cells International, 2016. 2016: p. 1-12.
82. Ma, R., Liang, J., Huang, W., Guo, L., Cai, W., Wang, L., Paul, C., Yang, H.T., Kim,
H.W., and Wang, Y., Electrical Stimulation Enhances Cardiac Differentiation of
Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy.
Antioxid Redox Signal, 2018. 28(5): p. 371-384.
83. Jia, X., Zhang, L., and Mao, X., S-propranolol protected H9C2 cells from
ischemia/reperfusion-induced apoptosis via downregultion of RACK1 Gene.
Int J Clin Exp Pathol, 2015. 8(9): p. 10335-10344.
84. Lu, T., Pelacho, B., Hao, H., Luo, M., Zhu, J., Verfaillie, C.M., Tian, J., and Liu, Z.,
Cardiomyocyte differentiation of rat bone marrow multipotent progenitor
cells is associated with downregulation of Oct-4 expression. Tissue
Engineering Part A, 2010. 16(10): p. 3111-3117.
85. Aragon, A., Cebro-Marquez, M., Perez, E., Pazos, A., Lage, R.,
Gonzalez-Juanatey, J.R., Moscoso, I., Bao-Varela, C., and Nieto, D.,
Bioelectronics-on-a-chip for cardio myoblast proliferation enhancement using
electric field stimulation. Biomaterials research, 2020. 24(1): p. 1-10.
86. Chen, C., Zhang, X., and Dai, Y., Effect of pulsed electrical stimulation on the
proliferation and differentiation of H9c2 cells. Chinese journal of cellular and
molecular immunology, 2012. 29(4): p. 337-340.
113
87. Bahuguna, A., Khan, I., Bajpai, V.K., and Kang, S.C., MTT assay to evaluate the
cytotoxic potential of a drug. Pharmacology, 2017. 12(2): p. 115-118.
88. Patten, V.A., Chabaesele, I., Sishi, B., and Vuuren, D.v., Cardiomyocyte
differentiation: Experience and observations from 2 laboratories. SA heart,
2017. 14(2): p. 96-107.
89. Batista Napotnik, T., Polajzer, T., and Miklavcic, D., Cell death due to
electroporation - A review. Bioelectrochemistry, 2021. 141: p. 1-18.
90. Kotnik, T., Rems, L., Tarek, M., and Miklavcic, D., Membrane Electroporation
and Electropermeabilization: Mechanisms and Models. Annual Review of
Biophysics, 2019. 48(1): p. 63-91.
91. Weaver, J.C., Smith, K.C., Esser, A.T., Son, R.S., and Gowrishankar, T.R., A brief
overview of electroporation pulse strength-duration space: a region where
additional intracellular effects are expected. Bioelectrochemistry, 2012. 87: p.
236-243.
92. Chen, G.Y., Pang, D.W.P., Hwang, S.M., Tuan, H.Y., and Hu, Y.C., A
graphene-based platform for induced pluripotent stem cells culture and
differentiation. Biomaterials, 2012. 33(2): p. 418-427.
93. Flaim, C.J., Chien, S., and Bhatia, S.N., An extracellular matrix microarray for
probing cellular differentiation. Nature Methods, 2005. 2(2): p. 119-125. |