參考文獻 |
[1] Lin, C.-M., et al., Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir, 2012. 28(1): p. 689-700.
[2] van der Meel, R., et al., Extracellular vesicles as drug delivery systems: lessons from the liposome field. Journal of controlled release, 2014. 195: p. 72-85.
[3] Sani, M.-A. and F. Separovic, How membrane-active peptides get into lipid membranes. Accounts of chemical research, 2016. 49(6): p. 1130-1138.
[4] Lian, T. and R.J. Ho, Trends and developments in liposome drug delivery systems. Journal of pharmaceutical sciences, 2001. 90(6): p. 667-680.
[5] Discher, D.E. and A. Eisenberg, Polymer vesicles. Science, 2002. 297(5583): p. 967-973.
[6] Li, M.-H. and P. Keller, Stimuli-responsive polymer vesicles. Soft Matter, 2009. 5(5): p. 927-937.
[7] Yang, Y.-L., et al., Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures. Physical Chemistry Chemical Physics, 2018. 20(9): p. 6582-6590.
[8] Le Meins, J.-F., O. Sandre, and S. Lecommandoux, Recent trends in the tuning of polymersomes’ membrane properties. The European Physical Journal E, 2011. 34(2): p. 1-17.
[9] Anajafi, T. and S. Mallik, Polymersome-based drug-delivery strategies for cancer therapeutics. Therapeutic delivery, 2015. 6(4): p. 521-534.
[10] Jiang, Y., et al., Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers. Macromolecules, 2005. 38(15): p. 6710-6717.
[11] Blanazs, A., et al., Mechanistic insights for block copolymer morphologies: how do worms form vesicles? Journal of the American Chemical Society, 2011. 133(41): p. 16581-16587.
[12] Li, X., et al., Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length. The Journal of Physical Chemistry B, 2006. 110(5): p. 2024-2030.
[13] Kong, W., et al., Complex micelles from self-assembly of ABA triblock copolymers in B-selective solvents. Langmuir, 2010. 26(6): p. 4226-4232.
[14] Goers, R., et al., Optimized reconstitution of membrane proteins into synthetic membranes. Communications chemistry, 2018. 1(1): p. 1-10.
[15] Matsen, M. and M. Schick, Lamellar phase of a symmetric triblock copolymer. Macromolecules, 1994. 27(1): p. 187-192.
[16] Takano, A., et al., Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: Preparation of samples and determination of loop/bridge ratio. Macromolecules, 2005. 38(23): p. 9718-9723.
[17] Chang, H.-Y., et al., Floating and Diving Loops of ABA Triblock Copolymers in Lipid Bilayers and Stability Enhancement for Asymmetric Membranes. Biomacromolecules, 2020. 22(2): p. 494-503.
[18] Yang, Y.-L., Y.-J. Sheng, and H.-K. Tsao, Bilayered membranes of Janus dendrimers with hybrid hydrogenated and fluorinated dendrons: Microstructures and coassembly with lipids. Physical Chemistry Chemical Physics, 2019. 21(28): p. 15400-15407.
[19] Yang, Y.-L., Y.-J. Sheng, and H.-K. Tsao, Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes. Physical Chemistry Chemical Physics, 2018. 20(43): p. 27305-27313.
[20] Naolou, T., et al., Synthesis and characterization of graft copolymers able to form polymersomes and worm-like aggregates. Soft Matter, 2013. 9(43): p. 10364-10372.
[21] Wang, Y., et al., Protein‐Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Macromolecular bioscience, 2015. 15(9): p. 1304-1313.
[22] Peng, D., et al., Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly (acrylic acid) backbone and hydrophobic poly (methyl methacrylate) side chains. Polymer, 2007. 48(18): p. 5250-5258.
[23] Wang, L., T. Jiang, and J. Lin, Self-assembly of graft copolymers in backbone-selective solvents: a route toward stable hierarchical vesicles. RSC advances, 2013. 3(42): p. 19481-19491.
[24] Chang, H.-Y., et al., Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules, 2013. 46(14): p. 5644-5656.
[25] Wang, Y., et al., Compact vesicles self-assembled from binary graft copolymers with high hydrophilic fraction for potential drug/protein delivery. Acs Macro Letters, 2017. 6(11): p. 1186-1190.
[26] Kang, S.W., et al., pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly (β-amino ester) for anti-cancer drug delivery. Polymer, 2013. 54(1): p. 102-110.
[27] Nguyen, H.N., M. Ezzat, and C.-J. Huang, Lysolipid-Inspired Amphiphilic Polymer Nanostructures: Implications for Drug Delivery. ACS Applied Nano Materials, 2022.
[28] Milicic, A., et al., Small cationic DDA: TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PloS one, 2012. 7(3): p. e34255.
[29] Chinnagounder Periyasamy, P., et al., Nanomaterials for the local and targeted delivery of osteoarthritis drugs. Journal of nanomaterials, 2012. 2012.
[30] Chang, H.-Y., et al., Multilayered polymersome formed by amphiphilic asymmetric macromolecular brushes. Macromolecules, 2012. 45(11): p. 4778-4789.
[31] Espanol, P. and P. Warren, Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters), 1995. 30(4): p. 191.
[32] Hoogerbrugge, P. and J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Letters), 1992. 19(3): p. 155.
[33] Chen, Y.-F., et al., Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers. Nanoscale, 2015. 7(39): p. 16451-16459.
[34] Wu, H.-L., H.-K. Tsao, and Y.-J. Sheng, Dynamic and mechanical properties of supported lipid bilayers. The Journal of chemical physics, 2016. 144(15): p. 154904.
[35] Jakobsen, A.F., Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. The Journal of chemical physics, 2005. 122(12): p. 124901.
[36] Yang, Y.-L., H.-K. Tsao, and Y.-J. Sheng, Solid-supported polymer bilayers formed by coil–coil block copolymers. Soft Matter, 2016. 12(30): p. 6442-6450.
[37] Chu, K.-C., H.-K. Tsao, and Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci. Journal of colloid and interface science, 2019. 538: p. 340-348.
[38] Feller, S.E., et al., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of chemical physics, 1995. 103(11): p. 4613-4621.
[39] Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics, 1997. 107(11): p. 4423-4435.
[40] Sharma, S., Molecular dynamics simulation of nanocomposites using BIOVIA materials studio, lammps and gromacs. 2019: Elsevier. |