博碩士論文 106324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:18.118.205.75
姓名 吳振宇(Chen-Yu Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 防銲綠漆溶出含硫化合物對化鍍鎳鍍層影響之研究
(Effect of solder-mask leachable sulfur-contained chemical compound on electroless Ni(P) layer)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 現今最常被使用的金屬表面處理技術為化鍍鎳(electroless Ni),無論是在化鎳金製程(ENIG)或鎳鈀金製程(ENEPIG)皆會被大量使用,化鍍鎳具有很好的耐腐蝕性,常被用於電子產品中,銅線路上的保護層。雖然化鍍鎳製程技術已有相對成熟的發展,但在鎳層表面仍然會有難以解決的缺陷的產生,其中,防銲綠漆的溶出在化鍍鎳製程中對鍍出的化鍍鎳鍍層的品質造成了極大的影響。當防銲綠漆固化反應不完全時,在將基板浸泡至鍍液的過程中便會溶出,進而影響銲墊在進行表面處理製程時的成果,化鍍鎳鍍層在邊緣可能會有跳鍍發生,而使銲墊邊緣(接近防銲綠漆的位置)的銅面裸露。
本研究針對防銲綠漆中含硫分子對化鍍鎳鍍層抗腐蝕性質進行一系列探討:首先,為了確認鍍層中的含硫量是否會對化鍍鎳鍍層的抗腐蝕性質造成影響,開發出一套簡易的檢驗方式確認化鍍鎳鍍層中的微量硫含量,確認化鍍鎳鍍層中的微量硫含量對化鍍鎳鍍層抗腐蝕性質無明顯影響後。進一步討論防銲綠漆中含硫化合物對化鍍鎳鍍層的抗腐蝕性質的影響機制:透過GC-MS檢測出防銲綠漆所溶出的含硫化合物為4-(Methylsulfanyl)benzalde,將其添加至鍍液中完成化鍍鎳製程,根據CV以及OCV的結果表明,0到30 ppm 4-(Methylsulfanyl)benzalde在化鍍鎳反應的過程中會增強H2PO2-的氧化反應,使H2PO2-氧化成H2PO3-,並放出電子提供Ni2+的還原,同時,H2PO2-的氧化反應與H2PO2-還原成P的還原反應為結抗反應,因此Ni(P)層中的P含量也會隨之降低,透過XRD的分析結果也發現隨著P量的降低,Ni(P)層的結晶性也由非晶逐漸轉為多晶結構。然而,4-(Methylsulfanyl)benzalde的添加量超過30 ppm後,4-(Methylsulfanyl)benzalde會吸附在Cu金屬表面形成阻障層,阻止Ni2+還原反應的發生。將添加不同4-(Methylsulfanyl)benzalde濃度所鍍製出的Ni(P)試片進行電化學腐蝕分析,結果可以發現隨著4-(Methylsulfanyl)benzalde添加量的增加,Ni(P)層的抗腐蝕能力下降。由SEM結果得知,Ni(P)鍍層表面的crack寬度變寬且數量變多,其原因是因為4-(Methylsulfanyl)benzalde導致Ni(P)層中的P含量下降,結晶性由非晶變為多晶結構,使腐蝕溶液可經由晶界腐蝕攻擊Ni(P),最終導致Ni(P)被嚴重腐蝕。
摘要(英) The most commonly used surface finished treatment in recent years is electroless nickel, which is widely used in either the electroless nickel immersion gold process (ENIG) or the electroless nickel electroless palladium immersion gold process (ENEPIG). Electroless nickel often used in electronic products, as a protective layer on copper lines, owing to its good corrosion resistance. Although the electroless nickel plating process has been relatively matured, there are still difficult to prevent defects forming on the surface of the EN. The contamination of the plating solution may be the main cause of these surface defects, and the sources of the contamination may because of the solder mask dissolution. When the curing reaction of the solder mask is not complete, it will dissolve into plating solution during the ENIG process, which will affect the results of reliability of EN on the solder pad. Skip plating happened and exposed of the copper surface at the edge of the solder pad (close to the solder mask area) would be occurred.
A series of discussions on the corrosion resistance of EN affected by sulfur-containing molecules in solder mask would be presented in this study. First, in order to confirm whether the S content in the EN would affect the corrosion resistance, a simple test method is used to confirm the trace S content in the EN. Combined with the corrosion test result, it showed that the trace S content in the EN has no obvious effect on the corrosion resistance of the EN. The influence mechanism of sulfur-containing molecules in solder mask on the corrosion resistance of EN coating was further discussed. The sulfur-containing molecules dissolved in solder mask detected by GC-MS is 4-(Methylsulfanyl)benzalde. Thus, the EN process is completed with adding 4-(Methylsulfanyl)benzalde in the plating solution. According to the results of CV and OCV analysis, 0 to 30 ppm 4-(Methylsulfanyl)benzalde will enhance the oxidation reaction of H2PO2- during the EN process, so that H2PO2- is oxidized to H2PO3-, and release electrons to the reduce Ni2+ ions to Ni. At the same time, the oxidation reaction of H2PO2- would inhibit the reduction reaction of H2PO2-, thus, the P content in the Ni(P) layer will also decrease. The XRD analysis results also found that with the decrease of P content, the crystallinity of the Ni(P) layer gradually changed from amorphous to polycrystalline structure. However, when the addition amount of 4-(Methylsulfanyl)benzalde exceeds 30 ppm, 4-(Methylsulfanyl)benzalde will adsorb on the Cu surface to form a barrier layer, preventing the occurrence of Ni2+ reduction reaction. The Ni(P) specimens plated with different 4-(Methylsulfanyl)benzalde concentrations were subjected to electrochemical corrosion analysis. The results showed that with the increase of 4-(Methylsulfanyl)benzalde addition, the corrosion resistance of the Ni(P) layer decreased. From the results of SEM, it can be seen that the crack width on the surface of the Ni(P) coating becomes wider and the number of cracks increases. The reason is that the content of P in the Ni(P) layer decreases due to 4-(Methylsulfanyl)benzalde, and the crystallinity changes from amorphous to polycrystalline. The polycrystalline structure allows the etching solution to attack Ni(P) via grain boundary corrosion, which eventually causes Ni(P) to be severely corroded.
關鍵字(中) ★ 防銲綠漆
★ 化鍍鎳
★ 抗腐蝕機制
關鍵字(英) ★ solder mask
★ electroless Ni(P) process
★ corrosion resistance
論文目次 摘要 i
Abstract ii
Table of contents iv
List of Figure vi
List of tables ix
Chapter 1: Introduction 1
1-1 Background 1
1-2 Electroless Nickel Immersion Gold (ENIG) Surface Finished 3
1-2-1 Solder Mask Manufacturing Process 3
1-2-2 ENIG Process 3
1-2-3 Failure Issue and corrosion factor for ENIG 5
1-3 Electrochemical Corrosion Method 12
1-3-1 Open Circuit Potential 12
1-3-2 Linear Sweep Voltammetry 12
1-3-3 Cyclic Voltammetry 13
1-3-4 Tafel Plot 14
Chapter 2: Motivation 17
Chapter 3: The experiments procedure and analysis methods 21
3-1 Sample preparing 21
3-2 EN product analysis 22
3-3 Electrochemical property analysis 22
Chapter 4: Trace sulfur content in EN layer 23
4-1 The method to detect trace sulfur content in EN layer 23
4-1-1 SO42- precipitation method 23
4-1-2 Detection method of sulfur content in Ni(P) 25
4-2 Electrochemical corrosion test 27
4-2-1 Surface Morphology after EN process 27
4-2-2 Electrochemical property analysis 30
Chapter 5: Effect of Solder Mask dissolved molecules on EN properties 32
5-1 EN property with sulfur-contained contaminations co-deposit during EN process 32
5-1-1 Property of as-deposited EN layer 32
5-1-2 Electrochemical property analysis 35
5-1-3 Mechanism of pitting corrosion on EN layer 37
5-2 Effect of solder mask dissolved molecules on EN properties 41
5-2-1 Property of EN with different 4-(Methylsulfanyl)benzalde concentration 41
5-2-2 Mechanism of 4-(Methylsulfanyl)benzalde on EN process 47
5-2-3 Electrochemical corrosion test 51
Chapter 6: Summary 54
Reference 55
參考文獻 [1] Frost & Sullivan: Automotive Applications to Spur Demand for Surface Treatment Chemicals by 2026. https://www.frost.com/news/automotive-applications-to-spur-demand-for-surface-treatment-chemicals-by-2026/
[2] Markets and Markets: Metal Finishing Chemicals Market by Type (Cleaning, Conversion Coating, Proprietary), Process (Electroplating, Polishing, Anodizing), Material (ZN, NI, CR, CU, AU), End Use (Automotive, Electrical & Electronics), Region - Global Forecast to 2021. https://www.marketsandmarkets.com/Market-Reports/metal-finishing-chemical-market-8788543.html
[3] Chowdhury, Promod R., Jeffrey C. Suhling, and Pradeep Lall. "Mechanical Characterization of Solder Mask Materials." IEEE, pp. 1133-1141, 2018.
[4] Kamon, Takashi, and Hitoshi Furukawa. "Curing mechanisms and mechanical properties of cured epoxy resins." Epoxy Resins and composites IV, pp. 173-202., 1986.
[5] N. J. Jin, et al. "Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete." Construction and Building Materials, Vol 156, pp. 933-943, 2017.
[6] Marchetti, Barbara, Tolga NV Karsili, and Michael NR Ashfold. "Exploring Norrish type I and type II reactions: an ab initio mechanistic study highlighting singlet-state mediated chemistry." Physical Chemistry Chemical Physics, Vol 21 pp. 14418-14428, 2019.
[7] J. Yu, et al. "Naphthalimide aryl sulfide derivative norrish type I photoinitiators with excellent stability to sunlight under near-UV LED." Macromolecules, Vol 52, pp. 1707-1717, 2019.
[8] Rowell, Keiran N., Scott H. Kable, and Meredith JT Jordan. "Structural effects on the Norrish Type I α-bond cleavage of tropospherically important carbonyls." The Journal of Physical Chemistry A, Vol 123 8 pp. 10381-10396, 2019.
[9] B. H. Lee, J. H. Choi, and H. J. Kim. "Coating performance and characteristics for UV-curable aliphatic urethane acrylate coatings containing norrish type I photoinitiators." Journal of Coatings Technology and Research, Vol 3.3 pp. 221-229, 2006.
[10] Aoyama, Hiromu, et al. "Photochemical reactions of. alpha.-oxo amides. Norrish type II reactions via zwitterionic intermediates." Journal of the American Chemical Society, Vol 105, pp. 1958-1964, 1983.
[11] Davidson, R. Stephen, Dean Goodwin, and Ph Fornier de Violet. "The mechanism of the norrish type II reaction of α-keto-acids and esters." Tetrahedron Letters, Vol 22, pp. 2485-2486, 1981.
[12] G. Ding, et al. "Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators." Dyes and Pigments, Vol 137, pp. 456-467, 2017.
[13] Ozgul, Eren Ozeren, and M. Hulusi Ozkul. "Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures." Construction and Building Materials, Vol 158, pp. 369-377, 2018.
[14] Rocks, Jens, et al. "The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy." Polymer, Vol 45, pp. 6799-6811, 2004.
[15] Sudagar, Jothi, Jianshe Lian, and Wei Sha. "Electroless nickel, alloy, composite and nano coatings–A critical review." Journal of alloys and compounds, Vol 571, pp. 183-204, 2013.
[16] Małecki, A., and A. Micek-Ilnicka. "Electroless nickel plating from acid bath." Surface and Coatings Technology, Vol 123, pp. 72-77, 2000.
[17] Martyak, Nicholas M. "Characterization of thin electroless nickel coatings." Chemistry of materials, Vol 6, pp. 1667-1674, 1994.
[18] E. M. Ma, S. F. Luo, and P. X. Li. "A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings." Thin Solid Films, Vol 166, pp. 273-280, 1988.
[19] Keong, K. G., W. Sha, and S. Malinov "Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content." Journal of Alloys and Compounds, Vol 334, pp. 192-199, 2002.
[20] Vafaei-Makhsoos, E., Edwin L. Thomas, and Louis E. Toth. "Electron microscopy of crystalline and amorphous Ni-P electrodeposited films: In-situ crystallization of an amorphous solid." Metallurgical Transactions A, Vol 9, pp. 1449-1460, 1978.
[21] Mai, Q. X., R. D. Daniels, and H. B. Harpalani. "Structural changes induced by heating in electroless nickel-phosphorus alloys." Thin Solid Films, Vol 166 pp. 235-247, 1988.
[22] Kumar, PP. Sampath, and PP. Kesavan Nair. "Studies on crystallization of electroless Ni-P deposits." Journal of Materials Processing Technology, Vol 56, pp. 511-520, 1996.
[23] Allen, Robert M., and John B. VanderSande. "The structure of electroless Ni-P films as a function of composition." Scr. Metall.;(United States), Vol 16, pp. 1161-1164, 1982.
[24] J. Son, et al. "Thiourea-based extraction and deposition of gold for electroless nickel immersion gold process." Industrial & Engineering Chemistry Research, Vol 59.16, pp. 8086-8092, 2020.
[25] Y. Wang, et al. "Effects of organic additives on the immersion gold depositing from a sulfite–thiosulfate solution in an electroless nickel immersion gold process." RSC Advances, Vol 6, pp. 9656-9662, 2016.
[26] Y.R. Wang, et al. "Immersion gold deposition from a chloroauric acid–choline chloride solution: Deposition kinetics and coating performances." Surface and Coatings Technology, Vol 265, pp. 62-67, 2015.
[27] Goosey, Martin. "Factors influencing the formation of “black pad” in electroless nickel‐immersion gold solderable finishes—a processing perspective." Circuit World, Vol 28, pp. 36-3, 2002.
[28] J. Yu, and Kyoungdoc Kim. "Effects of under bump metallurgy (UBM) materials on the corrosion of electroless nickel films." Metallurgical and Materials Transactions A, Vol 46, pp. 3173-3181, 2015.
[29] J. H. Kim, and J. Yu. "Black Pad Susceptibility of the Electroless Ni Films on the Cu UBM." Journal of electronic materials, 43, pp. 4335-4343, 2014.
[30] B.K. Kim, et al. "Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process." Journal of Electronic materials, Vol 37, pp. 527-534, 2008.
[31] Bolger, Paul T., and David C. Szlag. "Current and emerging technologies for extending the lifetime of electroless nickel plating baths." Clean Products and Processes Vol 2, pp. 209-219, 2001.
[32] Accogli, Alessandra, et al. "Understanding the failure mode of electroless nickel immersion gold process: in situ-Raman spectroscopy and electrochemical characterization." Journal of The Electrochemical Society, Vol 167, 2002.
[33] K. H. Kim, , J. Yu, and J. H. Kim. "A corrosion couple experiment reproducing the black pad phenomenon found after the electroless nickel immersion gold process." Scripta Materialia, Vol 63, pp. 508-511, 2010.
[34] Jin, Lei, et al. "Quantitative Analysis of Corrosion Resistance for Electroless Ni-P Plating."
[35] H. J. Lee, et al. "Characterization of the Contamination Factor of Electroless Ni Plating Solutions on the ENIG Process." Journal of Electronic Materials, Vol 47, pp. 5158-5164, 2018.
[36] Micyus, Nicole. "Corrosion resistance of ELV-compliant mid-and low/mid-phosphorus electroless nickel." Journal of Applied Surface Finishing, Vol 3, pp. 128-133, 2008.
[37] H. J. Lee, et al. "Effect of solder resist dissolution on the joint reliability of ENIG surface and Sn–Ag–Cu solder." Microelectronics Reliability, Vol 87, pp. 75-80, 2018.
[38] H. J. Lee, et al. "Investigation of surface defects of electroless Ni plating by solder resist dissolution on the ENIG process." Microelectronic Engineering, Vol 200, pp. 39-44, 2018.
[39] Bard, Allen J., and Larry R. Faulkner. Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, 2e. John Wiley & Sons, 2002.
[40] Jones, R. H., M. J. Danielson, and D. R. Baer. "Role of segregated P and S in intergranular stress corrosion cracking of Ni." Journal of materials for energy systems, Vol 8, pp. 185-196, 1986.
[41] Johnson, W. C., et al. "Confirmation of sulfur embrittlement in nickel alloys." Scripta Metallurgica, Vol 8, pp. 971-974, 1974.
[42] Briant, C. L., and R. PP. Messmer. "Electronic effects of sulphur in nickel: A model for grain boundary embrittlement." Philosophical Magazine B, Vol 42, pp. 569-576, 1980.
[43] Yamaguchi, Masatake, Motoyuki Shiga, and Hideo Kaburaki. "Grain boundary decohesion by impurity segregation in a nickel-sulfur system." Science, Vol 307, pp. 393-397, 2005.
[44] Allart, M., et al. "A multi-technique investigation of sulfur grain boundary segregation in nickel." Scripta Materialia, Vol 68, pp. 793-796, 2013.
[45] Mulford, R. A. "Grain boundary segregation in Ni and binary Ni alloys doped with sulfur." Metallurgical Transactions A, Vol 14, pp. 865-870, 1983.
[46] Heuer, J. K., et al. "Relationship between segregation-induced intergranular fracture and melting in the nickel–sulfur system." Applied Physics Letters, Vol 76, pp. 3403-3405, 2000.
[47] Hu, Tao, et al. "Role of disordered bipolar complexions on the sulfur embrittlement of nickel general grain boundaries." Nature communications, Vol 9, pp. 1-10, 2018.
[48] Jiang, Wei, et al. "Study on Ni-Ni (S)-Ni (P) multilayer coating by friction-assisted jet electroplating on sintered NdFeB." Journal of Alloys and Compounds, Vol 787, pp. 1089-1096, 2019.
[49] Lin, Kwang-Lung, and Jia-Wei Hwang. "Effect of thiourea and lead acetate on the deposition of electroless nickel." Materials Chemistry and Physics, Vol 76, pp. 204-211, 2002.
[50] Ke‐Ping, Han, and Fang Jing‐Li. "Acceleration effect of electroless nickel deposition by thiourea." International journal of chemical kinetics, Vol 28, pp. 259-264, 1996.
[51] Baskaran, Irusen, TSN Sankara Narayanan, and A. Stephen. "Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni–P deposits." Materials chemistry and physics, Vol 99, pp. 117-126, 2006.
[52] Wu, Wangping, et al. "Influence of thiourea on electroless Ni–P films deposited on silicon substrates." Journal of Materials Science: Materials in Electronics, Vol 30.8, pp. 7717-7724, 2019.
[53] Qi, Zuqiang, et al. "Investigation on circular plating pit of electroless Ni–P coating." Industrial & Engineering Chemistry Research, Vol 53.8, pp. 3097-3104, 2014.
[54] Van Gool, A. PP., PP. J. Boden, and S. J. Harris. "Corrosion behaviour of some electroless nickel—phosphorus coatings." Transactions of the IMF, Vol 65, pp. 108-114, 1984.
[55] Frankel, G. S. "Pitting corrosion of metals: a review of the critical factors." Journal of the Electrochemical society, Vol 145, 2186, 1998.
[56] Salahinejad, E., R. Eslami Farsani, and L. J. E. F. A. Tayebi. "Synergistic galvanic-pitting corrosion of copper electrical pads treated with electroless nickel-phosphorus/immersion gold surface finish." Engineering Failure Analysis, Vol 77, pp. 138-145, 2017.
[57] Lee, Hung-Bin, et al. "Wear and immersion corrosion of Ni–P electrodeposit in NaCl solution." Tribology International, Vol 43, pp. 235-244, 2010.
[58] Amram, D., et al. "Grain boundary grooving in thin films revisited: the role of interface diffusion." Acta materialia, Vol 69, pp. 386-396, 2014.
[59] Rost, M. J., D. A. Quist, and J. W. M. Frenken. "Grains, growth, and grooving." Physical review letters, Vol 91, 2003.
[60] Kim, Hakkwan, et al. "Anomalous triple junction surface pits in nanocrystalline zirconia thin films and their relationship to triple junction energy." Acta materialia, Vol 57, pp. 3662-3670, 2009.
[61] Ando, Satoru, Takeshi Suzuki, and Kingo Itaya. "Layer-by-layer anodic dissolution of sulfur-modified Ni (100) electrodes: in situ scanning tunneling microscopy." Journal of Electroanalytical Chemistry, Vol 412, pp. 139-146, 1996.
[62] Marcus, Philippe, ed. Corrosion mechanisms in theory and practice. CRC press, 2011.
[63] Cheong, Woo-Jae, Ben L. Luan, and David W. Shoesmith. "Protective coating on Mg AZ91D alloy–The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni–P deposit." Corrosion Science, Vol 49, pp. 1777-1798, 2007.
[64] Leggesse, Ermias Girma, et al. "Theoretical study on photochemistry of Irgacure 907." Journal of Photochemistry and Photobiology A: Chemistry, Vol 347, pp. 78-85, 2017.
[65] Bryant, Stephanie J., Charles R. Nuttelman, and Kristi S. Anseth. "Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro." Journal of Biomaterials Science, Polymer Edition, Vol 11, pp. 439-457, 2000.
[66] Haloui, A. E. L., M. Sfaira, and M. Ebn Touhami. "Investigation of acidity and composition of the bath deposition in electroless Ni-P alloys with ammonium acetate as accelerator in acidic medium." IJMS, Vol 17, pp. 78-92, 2017.
[67] Han, Fei, et al. "In situ electrochemical generation of mesostructured Cu2S/C composite for enhanced lithium storage: mechanism and material properties." ChemElectroChem, Vol 1, pp. 733-740, 2014.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2022-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明