參考文獻 |
1. Chen, K., et al., A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife, 2013. 2: p. e00861.
2. Liang, H.L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-3.
3. Nien, C.Y., et al., Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet, 2011. 7(10): p. e1002339.
4. Harrison, M.M., et al., Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet, 2011. 7(10): p. e1002266.
5. Rossello, R.A., et al., Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. Elife, 2013. 2: p. e00036.
6. Lee, M.T., et al., Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013. 503(7476): p. 360-4.
7. Darbo, E., et al., Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis. BMC Genomics, 2013. 14: p. 226.
8. Pilot, F., et al., Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development, 2006. 133(4): p. 711-23.
9. Lott, S.E., et al., Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol, 2011. 9(2): p. e1000590.
10. Kwasnieski, J.C., T.L. Orr-Weaver, and D.P. Bartel, Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res, 2019. 29(7): p. 1188-1197.
11. ten Bosch, J.R., J.A. Benavides, and T.W. Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development, 2006. 133(10): p. 1967-77.
12. Fu, S., et al., Co-activation of microRNAs by Zelda is essential for early Drosophila development. Development, 2014. 141(10): p. 2108-18.
13. Bushati, N., et al., Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol, 2008. 18(7): p. 501-6.
14. Wessel, A.D., et al., The mechanical properties of early Drosophila embryos measured by high-speed video microrheology. Biophys J, 2015. 108(8): p. 1899-907.
15. Grosshans, J., H.A. Muller, and E. Wieschaus, Control of cleavage cycles in Drosophila embryos by fruhstart. Dev Cell, 2003. 5(2): p. 285-94.
16. Deneke, V.E., et al., Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos. Cell, 2019. 177(4): p. 925-941 e17.
17. Salz, H.K. and J.W. Erickson, Sex determination in Drosophila: The view from the top. Fly (Austin), 2010. 4(1): p. 60-70.
18. Sun, Y., et al., Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res, 2015. 25(11): p. 1703-14.
19. Schloop, A.E., P.U. Bandodkar, and G.T. Reeves, Formation, interpretation, and regulation of the Drosophila Dorsal/NF-kappaB gradient. Curr Top Dev Biol, 2020. 137: p. 143-191.
20. Xu, Z., et al., Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev, 2014. 28(6): p. 608-21.
21. Leichsenring, M., et al., Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science, 2013. 341(6149): p. 1005-9.
22. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
23. Graham, V., et al., SOX2 functions to maintain neural progenitor identity. Neuron, 2003. 39(5): p. 749-65.
24. Soufi, A., Mechanisms for enhancing cellular reprogramming. Curr Opin Genet Dev, 2014. 25: p. 101-9.
25. Alvarez-Rendon, J.P., R. Salceda, and J.R. Riesgo-Escovar, Drosophila melanogaster as a Model for Diabetes Type 2 Progression. Biomed Res Int, 2018. 2018: p. 1417528.
26. Srinivas, U.S., et al., ROS and the DNA damage response in cancer. Redox Biol, 2019. 25: p. 101084.
27. Larkin, A., et al., FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Research, 2020. 49(D1): p. D899-D907.
28. Lee, D.F., et al., A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol, 2000. 74(24): p. 11873-80.
29. Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol, 1972. 27(2): p. 353-65.
30. Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula. World J Virol, 2016. 5(2): p. 85-6.
31. Kim, D., et al., Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019. 37(8): p. 907-915.
32. dos Santos, G., et al., FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res, 2015. 43(Database issue): p. D690-7.
33. Anders, S., P.T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015. 31(2): p. 166-9.
34. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550.
35. Wu, T., et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021. 2(3): p. 100141.
36. Kolde, R., pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019.
37. Chung, Y.T. and E.B. Keller, Positive and negative regulatory elements mediating transcription from the Drosophila melanogaster actin 5C distal promoter. Mol Cell Biol, 1990. 10(12): p. 6172-80.
38. Kim, K.R., Y.K. Kim, and H.J. Cha, Recombinant baculovirus-based multiple protein expression platform for Drosophila S2 cell culture. J Biotechnol, 2008. 133(1): p. 116-22.
39. Qin, J.Y., et al., Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One, 2010. 5(5): p. e10611.
40. Fitzgerald, D.J., et al., Protein complex expression by using multigene baculoviral vectors. Nat Methods, 2006. 3(12): p. 1021-32.
41. Fouladvand, F., et al., A review of the methods for concentrating M13 phage. Journal of Applied Biotechnology Reports, 2020. 7(1): p. 7-15.
42. Ellis, E.L. and M. Delbruck, The Growth of Bacteriophage. J Gen Physiol, 1939. 22(3): p. 365-84.
43. Lamb, R.A.P., Griffith D., Paramyxoviridae : the viruses and their replication. 2007.
44. Gothberg, C., T. Bergendal, and T. Magnusson, Complications after treatment with implant-supported fixed prostheses: a retrospective study. Int J Prosthodont, 2003. 16(2): p. 201-7.
45. Martorell, O., et al., Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS One, 2014. 9(2): p. e88413.
46. Gasser, A., et al., A non-contact impedimetric biosensing system for classification of toxins associated with cytotoxicity testing. Bioelectrochemistry, 2020. 133: p. 107448.
47. Wieschaus, E. and C. Nusslein-Volhard, The Heidelberg Screen for Pattern Mutants of Drosophila: A Personal Account. Annu Rev Cell Dev Biol, 2016. 32: p. 1-46.
48. Larson, E.D., et al., Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun, 2021. 12(1): p. 7153.
49. Pearson, J.C., J.D. Watson, and S.T. Crews, Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer. Dev Biol, 2012. 366(2): p. 420-32.
50. Lecuit, T., R. Samanta, and E. Wieschaus, slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell, 2002. 2(4): p. 425-36.
51. Liang, H.-L., Initiation of the zygotic genome in the Drosophila embryos 2009.
52. Chen, P., et al., Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol, 1998. 201(2): p. 202-16.
53. Goyal, L., et al., Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J, 2000. 19(4): p. 589-97.
54. Thomenius, M., et al., Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death. Cell Death & Differentiation, 2011. 18(10): p. 1640-1650.
55. Vasudevan, D. and H.D. Ryoo, Detection of Cell Death in Drosophila Tissues. Methods Mol Biol, 2016. 1419: p. 131-44.
56. Denton, D., M.T. Aung-Htut, and S. Kumar, Developmentally programmed cell death in Drosophila. Biochim Biophys Acta, 2013. 1833(12): p. 3499-3506.
57. Schulz, K.N., et al., Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res, 2015. 25(11): p. 1715-26.
58. Yamada, S., et al., The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal Target Enhancer to Potentiate Transcriptional Output. Curr Biol, 2019. 29(8): p. 1387-1393 e5.
59. Arnold, C.D., et al., Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 2013. 339(6123): p. 1074-7.
60. Muerdter, F., L.M. Boryn, and C.D. Arnold, STARR-seq - principles and applications. Genomics, 2015. 106(3): p. 145-150. |