博碩士論文 108329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:3.137.166.223
姓名 黃意鈞(Yi-Jun Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 釹摻雜鑭鍶鈷鐵氧化物陰極材料應用於質子傳導型固態氧化物燃料電池
(Neodymium doped LaxSr1-xCoyFe1-yO3-δ oxides as the cathode material for proton-conducting solid oxide fuel cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-20以後開放)
摘要(中) 本研究藉由化學溶液合成法成功製備出釹摻雜鑭鍶鈷鐵氧化物之陰極粉末並作為質子傳輸型固態氧化物燃料電池之陰極材料。利用含釹元素之陰極材料其優異之氧表面交換速率以及高氧離子傳導率之特性,促進了陰極氧還原反應進行,藉此有效地降低電池之電化學阻抗並提升電化學性能。
釹摻雜鑭鍶鈷鐵氧化物陰極之電池於800 ℃之操作溫度下,具有最高之峰值功率密度407.61 mW/cm2,相較於純鑭鍶鈷鐵氧化物陰極之電池約成長6.4 %,且釹摻雜鑭鍶鈷鐵氧化物陰極電池具有最低之歐姆阻抗2.4245 Ω•cm²與極化阻抗0.0654 Ω•cm²,依據本研究結果可得知透過釹摻雜於鑭鍶鈷鐵氧化物,確實改善氧離子傳導速率且有助於電化學性能的提升,但以釹完全置換鑭之電池由於導電率之降低,使氧還原反應進行趨緩,因此導致歐姆阻抗與極化阻抗上升。
摘要(英) This study successfully synthesized neodymium-doped lanthanum strontium cobalt ferrite oxides cathode powder by chemical solution synthesis method as a cathode material for proton-conducting solid oxide fuel cells. The neodymium-based materials had the characteristics of excellent oxygen surface exchange rate and high oxygen ion conductivity. Therefore, oxygen ions could be transported faster so that it was benefit to promote the oxygen reduction reaction proceeds in the cathode. When the oxygen reduction reaction increases, the electrochemical impedance would decrease. As stated above, the reduction of electrochemical impedance would improve the electrochemical performance of cell effectively.
The neodymium-doped lanthanum strontium cobalt ferrite oxides cell had the highest peak power density of 407.61 mW/cm2 at 800 ℃. Compared to the lanthanum strontium cobalt ferrite oxides cell, the neodymium-doped lanthanum strontium cobalt ferrite oxides had growth by 6.4 %. Meanwhile, the cell had the lowest ohmic impedance (2.4245 Ω•cm²) and polarization impedance (0.0654 Ω•cm²). According to the results of this study, it could be known that the doping of neodymium into lanthanum strontium cobalt ferrite oxides improved the oxygen ion conductivity and it contributed to the improvement of electrochemical performance. However, the lanthanum was replaced completely by neodymium in the perovskite structure and it resulted in poor performance. The neodymium strontium cobalt ferrite oxides cell had higher resistance because it had poor conductivity.
關鍵字(中) ★ 釹
★ 鑭鍶鈷鐵氧化物
★ 陰極
★ 固態氧化物燃料電池
關鍵字(英)
論文目次 目錄

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1前言 1
1.2研究背景 4
第二章、文獻回顧 10
2.1固態氧化物燃料電池之工作原理 10
2.2固態氧化物燃料電池結構 13
2.3電池結構設計 20
2.4電化學交流阻抗頻譜 22
2.5電化學分析 23
第三章、實驗方法與步驟 26
3.1實驗參數設計 26
3.2實驗原料 28
3.3儀器 29
3.4實驗流程 31
3.5材料分析 37
3.5.1全電池I-V性能量測 37
3.5.2 X光粉末繞射儀 39
3.5.3掃描式電子顯微鏡 39
3.5.4恆電位阻抗分析儀 40
第四章、實驗結果與討論 42
4.1 XRD分析 43
4.2單電池 I-V 性能測量與分析 46
4.3單電池之EIS測量與分析 49
4.4微結構分析 55
第五章、結論 57
第六章、參考文獻 58
參考文獻 [1]N. Radenahmad, A. T. Azad, M. Saghir, J. Taweekun, M. S. A. Bakar,
M. S. Reza, A. K.Azada, A review on biomass derived syngas for
SOFC based combined heat and power application, Renewable and
Sustainable Energy Reviews 119(2020)109560.
[2]B. Zhu, Advantages of intermediate temperature solid oxide fuel cells
for tractionary applications, Journal of Power Sources 93(2001)82-86.
[3]I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins,
N. Shah, K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science 12(2019)463-491.
[4]P. Boldrin and N. P. Brandon, Progress and outlook for solid oxide fuel
cells for transportation applications, Nature Catalysis 2(2019)571-577.
[5]D. J. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Intermediate
temperature solid oxide fuel cells, Chemical Society Reviews 37 (2008)1568-1578.
[6]S. Jo, B. Sharma, D. H. Park, J. H. Myung, Materials and nano-
structural processes for use in solid oxide fuel cells: A review, Journal of the Korean Ceramic Society 57(2020)135-151.
[7]M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of
progress, future perspectives and challenges, International Journal of Hydrogen Energy 46(2021)27643-27674.
[8]S. Sun, Z. Cheng, Electrochemical behaviors for Ag, LSCF and BSCF
as oxygen electrodes for proton conducting IT-SOFC, Journal of The Electrochemical Society 164(2017)F3104.
[9]I. Jang, H. Lee, R. Tamarany, H. Yoon, C. Kim, S. Kim, C. W. Lee, T.
Song, U. Paik, Tailoring the Ratio of A-Site Cations in Pr1-xNdxBa
BaCo1.6Fe0. 4O5+δ to Promote the Higher Oxygen Reduction Reaction
Activity for Low-Temperature Solid Oxide Fuel Cells, Chemistry of
Materials 32(2020)3841-3849.
[10]F. Dong, D. Chen, Y. Chen, Q. Zhao, Z. Shao, La-doped BaFe
O3− δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte, Journal of Materials Chemistry 22(2012)15071-15079.
[11]M. A. Tamimi, A. C. Tomkiewicz, A. Huq, S. McIntosh, On the link
between bulk and surface properties of mixed ion electron conducting materials Ln0.5Sr0.5Co0.8Fe0.2O3−δ (Ln= La, Pr, Nd), Journal of Materials Chemistry A 2(2014)18838-18847.
[12]H. Kwon, J. Park, B.-K. Kim, J. W. Han, Effect of B-cation doping on
oxygen vacancy formation and migration in LaBO3: A density functional theory study, Journal of the Korean Ceramic Society 52(2015)331-337.
[13]C. T. Garibay, D. Kovar, A. Manthiram, Ln0.6Sr0.4Co1− yFeyO3−δ
(Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells, Journal of Power Sources 187(2009)480-486.
[14]L. Baqué, A. Caneiro, M. S. Moreno, A. Serquis, High performance
nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochemistry Communications 10(2008)1905-1908.

[15]B. Kumuk, M. A. Alemu, M. Ilbas, Investigation of the effect of ion
transition type on performance in solid oxide fuel cells fueled hydrogen and coal gas, International Journal of Hydrogen Energy (2021).
[16]K. Prabhakaran, M. Beigh, J. Lakra, N. Gokhale, S. Sharma,
Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process, Journal of materials processing technology 189 (2007)178-181.
[17]A. A. Samat, M. R. Somalu, A. Muchtar, O. H. Hassan, N. Osman,
LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application, Journal of Sol-Gel Science and Technology 78(2016)382-393.
[18]A. S. Kumar, R. Balaji, P. Puviarasu, S. Jayakumar, Structural and
morphological analysis of barium cerate electrolyte for SOFC application, Materials Science-Poland, 35(2017)120-125.
[19]M. A. Al Mamun, M. Noor, M. Hasanuzzaman, S. Hashmi, Nano-
Porous Materials for Use in Solar Cells and Fuel Cells, Module in Materials Science and Materials Engineering (2020).
[20]E. Fabbri, D. Pergolesi, E. Traversa, Electrode materials: a challenge
for the exploitation of protonic solid oxide fuel cells, Science and technology of advanced materials (2010).
[21]T. Fukui, S. Ohara, S. Kawatsu, Conductivity of BaPrO3 based
perovskite oxides, Journal of Power Sources 71(1998)164-168.



[22]I. Ahmed, F. G. Kinyanjui, S. M. Rahman, P. Steegstra, S. G. Eriksson,
E. Ahlberg, Proton conductivity in mixed B-site doped perovskite oxide BaZr0.5In0.25Yb0. 25O3−δ, Journal of The Electrochemical Society 157(2010)B1819.
[23]J. Lv, L. Wang, D. Lei, H. Guo, R. Kumar, Sintering, chemical
stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3−δ (M= In, Y, Gd, Sm), Journal of alloys and compounds 467(2009)376-382.
[24]W. Zhang, Y. H. Hu, Progress in proton‐conducting oxides as
electrolytes for low‐temperature solid oxide fuel cells: From materials to devices, Energy Science & Engineering (2021).
[25]Z. Liu, X. Wang, M. Liu, J. Liu, Enhancing sinterability and
electrochemical properties of Ba (Zr0.1Ce0.7Y0.2)O3-δ proton conducting electrolyte for solid oxide fuel cells by addition of NiO, International Journal of Hydrogen Energy 43(2018)13501-13511.
[26]P. Babilo, S. M. Haile, Enhanced sintering of yttrium‐doped
barium zirconate by addition of ZnO, Journal of the American Ceramic Society 88(2005)2362-2368.
[27]R. Costa, N. Grünbaum, M. H. Berger, L. Dessemond, A. Thorel,
On the use of NiO as sintering additive for BaCe0.9Y0.1O3−α , Solid State Ionics 180(2009)891-895.
[28]N. S. M. Sabri, S. Izman, D. Kurniawan, Perovskite materials for
intermediate temperature solid oxide fuel cells cathodes: A review, AIP Conference Proceedings (2020)030013.

[29]S. Ricote, G. Caboche, O. Heintz, Synthesis and proton incorporation
in BaCe0.9−xZrxY0.1O3−δ , Journal of Applied Electrochemistry, 39(2009)553-557.
[30]D. Radhika, A. Nesaraj, Materials and components for low
temperature solid oxide fuel cells-an overview, International Journal of Renewable Energy Development 2(2013)87.
[31]Q. Wang, J. Hou, Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Z. Fu,
J. L. Luo, Pr2BaNiMnO7−δ double-layered Ruddlesden-Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells, Journal of Materials Chemistry A8(2020)7704-7712.
[32]J. H. L. K. De Silva, Preparation of solid oxide fuel cell cathodes and
analysis by impedance spectroscopy, Graduate, Theses West Virginia University (2014).
[33]S. P. Jiang, Development of lanthanum strontium cobalt ferrite
perovskite electrodes of solid oxide fuel cells-A review, International Journal of Hydrogen Energy 44(2019)7448-7493.
[34]S. Guo, H. Wu, F. Puleo, L. F. Liotta, B-site metal (Pd, Pt, Ag, Cu, Zn,
Ni) promoted La1−xSrxCo1−yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs, Catalysts 5(2015)366-391.
[35]J. H. Kim, A. Manthiram, Layered LnBaCo2O5+δ perovskite cathodes
for solid oxide fuel cells: an overview and perspective, Journal of Materials Chemistry A 3(2015)24195-24210.


[36]R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, Cathode processes and
materials for solid oxide fuel cells with proton conductors as electrolytes, Journal of Materials Chemistry 20(2010)6218-6225.
[37]C. Mendonça, A. Ferreira, D. M. Santos, Towards the
Commercialization of Solid Oxide Fuel Cells: Recent Advances
in Materials and Integration Strategies, Fuels 2(2021)393-419.
[38]Y. Hsieh, Y. Chan, S. Shy, Effects of pressurization and temperature
on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources 299(2015)1-10.
[39]K. Yamamoto, K. Sato, M. Matsuda, M. Ozawa and S. Ohara,
Anomalous low-temperature sintering of a solid electrolyte thin film of tailor-made nanocrystals on a porous cathode support for low-temperature solid oxide fuel cells, Ceramics International 47 (2021)15939-15946.
[40]V. Subotić and T. W. Napporn, Nanostructured metal oxides for high-
performance solid oxide fuel cells (SOFCs), In Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries (2021)235-261.
[41]M. Joshi, Importance of Impedance Spectroscopy Technique in
Materials Characterization: A Brief Review, Mechanics,Materials Science & Engineering MMSE Journal 9(2017).
[42]H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto and Y.
Fujishiro, Challenge for lowering concentration polarization in solid oxide fuel cells, Journal of Power Sources 302(2016)53-60.
[43]Z. Li, Z. Zheng, L. Xu, X. Lu, A review of the applications of fuel
cells in microgrids: opportunities and challenges, BMC Energy
1(2019)1-23.
[44]C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave,
L. M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science advances, 5(2019)0693.
[45]J. Richter, P. Holtappels, T. Graule, T. Nakamura, L. J. Gauckler,
Materials design for perovskite SOFC cathodes, Monatshefte für Chemie-Chemical Monthly140(2009)985-999.
[46]D. Montaleone, E. Mercadelli, A. Gondolini, M. Ardit, P. Pinasco,
A. Sanson, A. Role of the sintering atmosphere in the densification and phase composition of asymmetric BCZY-GDC composite membrane, Journal of the European Ceramic Society 39(2019)21-29.
[47]B. Fan, X. Liu, A-deficit LSCF for intermediate temperature solid
oxide fuel cells, Solid State Ionics 180(2009)973-977.
[48]H. Nakajima, T. Kitahara, Real-Time Electrochemical Impedance
Spectroscopy Diagnosis of the Marine Solid Oxide Fuel Cell, Journal of Physics: Conference Series (2016)032149.
[49]K. Lee, A. Manthiram, Comparison of Ln0.6Sr0.4CoO3−δ (Ln= La, Pr,
Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells, Journal of The Electrochemical Society 153 (2006)A794.


[50]M. Ahn, S. Han, J. Lee, W. Lee, Electrospun composite nanofibers
for intermediate-temperature solid oxide fuel cell electrodes, Ceramics
International 46(2020)6006-6011.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明