博碩士論文 108521060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.142.210.157
姓名 張凱程(Kai-Cheng Cahng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在多樣態的晶圓圖中找尋隱藏的刮痕樣態
(Hidden Scratch Pattern Recognition In Multiple Type)
相關論文
★ E2T-iSEE:應用於事件與情感狀態轉移排程器之編輯★ “偶”:具情感之球型機器人
★ 陣列區塊電容產生器於製程設計套件之評量★ 應用於數位家庭整合計畫影像傳輸子系統之設計考量與實現
★ LED 背光模組靜電放電路徑★ 電阻串連式連續參考值產生器於製程設計套件之評量
★ 短篇故事分類與敘述★ 延伸考慮製程參數相關性之類比電路階層式變異數分析器
★ 以電子電路觀點對田口式惠斯登電橋模擬實例的再分析★ 應用於交換電容ΔΣ調變電路之電容排列良率自動化擺置平台
★ 陣列MiM電容的自動化佈局★ 陣列MiM電容的平衡接點之通道繞線法
★ 氣象資訊達人★ 嵌入式WHDVI多核心Forth微控制器之設計
★ 應用於電容陣列區塊之維持比值良率的通道繞線法★ 使用於矽穿孔耦合分析之垂直十字鏈基板結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著半導體產業的興盛,晶圓圖分析是一個相當重要的議題,藉由分析晶圓圖上的錯誤樣態,可以知道哪道製程有問題產生,並針對不同的根本原因對機台做調整,例如:探針測試中,可能會因為測試探針在經過多次測試後有沾黏一些東西,導致測試時探針無法與待測晶片的接點有效地接觸,使得測試資料無法正確輸入到電路中測試,讓測試結果為壞品。本篇論文主要以特徵分析的方式,針對刮痕的錯誤樣態進行辨識與分析,利用霍夫轉換為基礎提出一套辨識模型,來判斷晶圓圖上是否有直線和弧線的缺陷,使用的實際晶圓圖為台積電所提供的WM-811K晶圓資料庫,其中的錯誤樣態可分為以下九種,Center、Donut、Scratch、Edge-Ring、Edge-Loc、Loc、Near-Full、Random、None。最後在WM-811K中取部分作為測試資料,以準確率、精確率、召回率的數值表現來顯示本論文模型的判斷準確度,基於此模型下,針對單樣態的刮痕辨識準確率能達到95.45%,多樣態的刮痕辨識準確率為76.21%,運算時間約3.92 ms/wafer 。
摘要(英) With the prosperity of the semiconductor industry, wafer map analysis is a very important issue. By analyzing the wafer map defect patterns, we can know the corresponding process problems and adjust the machine at different root causes, for example: in chip probing, test probe may stick something after multiple tests, which may cause the probe cannot effectively contact the pad of the test wafer, and lead to the test patterns may not be correctly input into the test circuit, that let the test result be bad. This paper mainly uses Feature-base analysis to identify and analyze the scratch defect pattern, and use Hough transform to propose a identification model to decide whether have line or arc defects on the wafer map. The actual wafer map we used is WM-811K wafer database provided by TSMC. The defect patterns can be divided into the following nine types: Center, Donut, Scratch, Edge-Ring, Edge-Loc, Loc, Near- Full, Random, None. Finally, take part of WM-811K as the test data, and use the numerical performance of Accuracy, Precision, and Recall to show the classification accuracy of the model in this paper. Based on this model, Single type scratch recognition accuracy could achieve 95.45%, Multiple type scratch recognition accuracy is 76.21%. Calculation time cost is about 3.92 ms/wafer.
關鍵字(中) ★ 晶圓圖
★ 錯誤樣態辨識
★ 特徵分析
關鍵字(英) ★ Wafer map
★ Defect type recognition
★ Feature based analysis
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
第二章 預備知識 9
2-1 基於特徵分析辨識晶圓圖樣態 9
2-2 群聚演算法DBSCAN 11
2-3 連通分量標記 15
第三章 晶圓圖之刮痕樣態檢測 16
3-1 霍夫轉換 16
3-2 晶圓圖之資料預處理 19
3-3 晶圓圖刮痕樣態流程之比較 25
第四章 模型分析與實驗結果 28
4-1 WM-811K原始資料分析 28
4-2 刮痕樣態檢測結果 30
4-3 刮痕樣態辨識率評估 33
第五章 結論 49
參考文獻 50
參考文獻 [1] Mill-Jer Wang, Yen-Shung Chang, J.E. Chen, Yung-Yuan Chen, and Shaw-Cherng Shyu, “Yield Improvement by Test Error Cancellation”, Asian Test Symposium (ATS′96), Hsinchu, Taiwan, pp.258-260, Nov. 1996.

[2] Ming-Ju Wu, Jyh-Shing Roger Jang, and Jui-Long Chen, “Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets”, IEEE Transactions on Semiconductor Manufacturing, Xi′an, China, Vol 28, pp. 1-12, Feb. 2015.

[3] Cheng Hao Jin, Hyuk Jun Na, Minghao Piao, Gouchol Pok, and Keun Ho Ryu, “A Novel DBSCAN-Based Defect Pattern Detection and Classification Framework for Wafer Bin Map”, IEEE Transactions on Semiconductor Manufacturing, Vol. 32, pp. 286-292, May. 2019.

[4] Katherine Shu-Min Li, Peter Yi-Yu Liao, Leon Chou, Ken Chau-Cheung Chen, Andrew Yi-Ann Huang, Sying-Jyan Wang, Gus Chang-Hung Han, “PWS: Potential Wafermap Scratch Defect Pattern Recognition with Machine Learning Techniques”, IEEE European Test Symposium (ETS), Tallinn, Estonia, May. 2020.

[5] 呂東穎, “Applications of Wafer Map Partition Analysis to Enhance the Salient Pattern Identification”, 碩士論文, 中央大學電機系, 2019.




[6] Katherine Shu-Min Li, Peter Yi-Yu Liao, Ken Chau-Cheung Cheng, Leon Li-Yang Chen, Sying-Jyan Wang, Andrew Yi-Ann Huang, Leon Chou, Gus Chang-Hung Han, Jwu E. Chen, Hsin-Chung Liang and Chung-Lung Hsu, “Hidden Wafer Scratch Defects Projection for Diagnosis and Quality Enhancement”, IEEE Transactions on Semiconductor Manufacturing, Vol. 34, pp. 9-16, Feb. 2021.

[7] 張嘉修, “NFTS:A None-First Two-Stage Model for Wafer Map Defect Classification”, 碩士論文, 中央大學電機系, 2021.

[8] 吳嘉峻, “Through Feature based Analysis to Recognize Wafer Map Scratch Pattern”, 碩士論文, 中央大學電機系, 2021.

[9] Richard O. Duda and Peter E. Hart , “Use of the Hough transformation to detect lines and curves in pictures ”, Communications of the ACM, Vol 15, pp. 11-15 January.1972 .

[10] Michael B. Dillencourt, Hannan Samet, Markku Tamminen, “A general approach to connected-component labeling for arbitrary image representations”, Journal of the ACM, Vol. 39, pp. 253-280, Apr. 1992.

[11] C.Galamhos, J.Matas and J. Kittler, ”Progressive probabilistic Hough transform for line detection”, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, June. 1999.

[12] Xie, Yonghong, and Qiang Ji, “A new efficient ellipse detection method.” Pattern Recognition, 2002 International Conference on Pattern Recognition, Quebec City, QC, Canada, Aug. 2002
[13] Bing Liu, “A Fast Density-Based Clustering Algorithm for Large Databases”, International Conference on Machine Learning and Cybernetics, Dalian, China, pp. 996-1000, Aug. 2006.

[14] Mengying Fan, Qin Wang, and Ben van der Waal, “Wafer defect patterns recognition based on OPTICS and multi-label classification”, IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi′an, China, pp. 912-915, Oct. 2016.

[15] Takeshi Nakazawa, and Deepak V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network”, IEEE Transaction on Semiconductor Manufacturing, Vol 31, pp. 309-314, May. 2018.

[16] Tsutomu Ishida, Izumi Nitta, Daisuke Fukuda, and Yuzi Kanazawa, “Deep Learning-Based Wafer-Map Failure Pattern Recognition Framework”, International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, pp. 291-297, Apr. 2019.

[17] Rui Wang, Nan Chen, “Wafer Map Defect Pattern Recognition Using Rotation-Invariant Features”, IEEE Transactions on Semiconductor Manufacturing, Vol. 32, pp. 596-604, Nov. 2019.
指導教授 陳竹一(Jwu-E Chen) 審核日期 2022-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明