博碩士論文 109521070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.227.46.189
姓名 李昱萱(Yu-Hsuan Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於冰機資料之異常值檢測結果評比與無標註樣本之群集數目預測演算法
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以於冰水主機設備(冰機)的效能分析為契機,發展三個項目:冰機效能分析演算法、異常值檢測結果之評分演算法與無標註資料的群集中心數目預測。
冰機是暖通空調設備中耗電的大宗,而暖通空調設備這類大型機器的運轉參數優化依賴於機械專家的知識,隨著老技師的凋零如何調整參數以優化能耗成為企業需解決的問題。本項研究在訓練資料上訓練非監督式的異常值檢測器,檢測來自測試資料的異常徵兆。並透過尋找訓練資料中與測試資料狀態相近的樣本,給予被診斷出狀態不良的測試資料一個建議的調整方向,使它能回到正常的運作狀態上。此效能優化演算法中,挑選好的異常值檢測器以及給予一筆測試資料一個一致的調整方向是演算法的關鍵,然而來自場域的資料屬於無標註資料,既沒辦法透過標註的絕對真相 (ground truth)找出最佳異常值檢測器,在測試資料各筆的調整向量不一致時,在不知曉群集數目的情況下,也無法透過分群手段把不一致的調整向量分離。
因此,本研究針對此二問題做進一步的探討。面對無標註資料的困境,先在人工生成的資料上以不依賴絕對真相的前提下,發展出對於不同的異常檢測結果之間在過濾相同比例異常值情況下的結果評分演算法。並觀察到預測錯誤的數量與評分分數之間具有一致性,藉以克服沒有絕對真相難以選擇異常值檢測器的困難點,提供自動化前處理一個輔佐性的指標,以利後續的肇因診斷。對於後者問題,本研究同樣在人工生成的資料上,發展了資料存在雜訊(異常值)的情況下依然可以尋找出資料的群集中心數目的演算法,並且可以透過後續的迭代更新提昇找到的群集中心之準確率,提供 k-means 等需要事先決定群集數量的演算法有關群集數量以及中心初始位置的資訊,解決無標註資料難以下定群集數量的難題。
摘要(英) Based on chiller performance analysis, this paper studies three tasks: fault detection and diagnosis (FDD) of chiller, anomaly detection evaluation, and cluster number prediction for unlabeled data.
The chiller is one of the main energy consumption machines of HVAC (heating, ventilation, and air conditioning) equipment. The optimization of operating parameters of HVAC equipment relies on the knowledge of mechanical experts. With the aging of machinery, how to adjust parameters to optimize energy consumption has become a problem that enterprises need to solve. The first part is the fault detection and diagnostics (FDD) system. This study detects the bad state of test data by training an unsupervised outlier detector on training data. After a bad state is found, the system will try to make suggested adjustments to the test data to restore the bad state to a normal state. The keys to this FDD system are how to choose a good outlier detector and how to give test data a consistent adjustment. However, for the former point, data from the factory is unlabeled, so we are challenged to get the ground truth to choose the best outlier detector. For the latter point, getting the main adjustment vector by clustering under the unknown number of clusters is difficult. The second and third parts of this study focus to solve the above two problems.
Faced with the difficulty of unlabeled data, we developed a scoring algorithm on artificially generated data to evaluate the classification results of different anomaly detectors with the same ratio of outliers. We observed a consistent relationship between the evaluation score and the wrong prediction number. This scoring algorithm can supply the automatic data pre-process in the FDD system with an index and overcome the challenge of choosing a good outlier detector without ground truth.
For the problem that the number of clusters on unlabeled data is unknown, we design an algorithm to predict the cluster centers and locations on data with or without noise. The accuracy of the found cluster centers can be improved through iterative updates. It can provide a basis for clustering algorithms such as k-means that need to determine the number of clusters in advance and solve the problem that it is difficult to determine the number of clusters for unlabeled data.
關鍵字(中) ★ 無標註資料
★ 故障檢測與診斷
★ 異常值演算法評估
★ 機器學習
關鍵字(英) ★ unlabeled data
★ anomaly detection evaluation
★ fault detection and diagnosis (FDD)
★ machine learning
論文目次 論文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 研究目標 3
1.4 論文架構 3
第二章 系統架構與軟硬體介紹 5
2.1 診斷系統的架構 5
2.2 硬體介紹 7
2.3 系統軟體介紹 7
第三章 冰機效能分析演算法 9
3.1 建模階段 10
3.2 判斷機制 12
3.3 診斷並調整 13
第四章 異常值檢測結果之評分演算法 19
4.1 計算距離序列 19
4.2 評分演算法設計 22
4.3 基於評分指標發展的兩輪取最佳解演算法 29
第五章 無標註資料的群集中心預測演算法 30
5.1 尋找急遽上升位置 30
5.1.2 計算評分演算法中的停損點 32
5.2 尋找群集中心 33
5.2.1 計算曲線平均高度 34
5.2.2 遞迴尋找群集中心 34
5.3 群集中心迭代更新 36
5.4 導入分群演算法 38
第六章 實驗結果 39
6.1 冰機效能分析演算法 39
6.1.1 四分位距方法面臨之問題 39
6.1.2 冰機資料的前處理方法比較 40
6.1.3 冰機資料診斷花費時間比較 41
6.1.4 效能分析演算法之調整效果 42
6.2 異常值檢測結果之評分演算法實驗 46
6.2.1 資料生成方法 46
6.2.2 評分演算法分析 47
6.2.3 使用評分演算法發展的異常值過濾流程 52
6.3 無標註資料的群集中心預測演算法實驗 56
6.3.1 預測正確率與群集靠近程度之影響 56
6.3.2 導入迭代更新之正確率 59
6.3.3 群集數目預測之分群結果比較 61
第七章 結論與未來展望 69
7.1 結論 69
7.2 未來展望 69
參考文獻 70
附錄 73
附錄一 第一代平均方法之實驗圖 73
附錄二 第一代熵方法之實驗圖 73
參考文獻 [1] 行政院環境保護署,“109年度的二氧化碳排放統計.” https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b, 2021.
[2] 經濟部能源局, “氣溫對我國電力消費的影響,” 經濟部能源局, 2017.
[3] 陳易, “基於機器學習之冰機設備運轉參數優化系統,” Master’s thesis, 國立中央大學, 桃園市, 2021. (王文俊指導)
[4] B. Sun, P. B. Luh, Q.-S. Jia, Z. O’Neill, and F. Song, “Building energy doctors: An SPC and kalman filter-based method for system-level fault detection in HVAC systems,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 1, pp. 215–229, 2013.
[5] M. Bourdeau, X. qiang Zhai, E. Nefzaoui, X. Guo, and P. Chatellier, “Modeling and forecasting building energy consumption: A review of data-driven techniques,” Sustainable Cities and Society, vol. 48, p. 101533, 2019.
[6] A. Ghanbari, S. Abbasian-Naghneh, and E. Hadavandi, “An intelligent load forecasting expert system by integration of ant colony optimization, genetic algorithms and fuzzy logic,” in 2011 IEEE symposium on computational intelligence and data mining (CIDM), 2011, pp. 246–251.
[7] M. Bonvini, M. D. Sohn, J. Granderson, M. Wetter, and M. A. Piette, “Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques,” Applied Energy, vol. 124, pp. 156–166, 2014.
[8] M. Elnour and N. Meskin, “Novel actuator fault diagnosis framework for multizone HVAC systems using 2-d convolutional neural networks,” IEEE Transactions on Automation Science and Engineering, 2021.
[9] F. Sidi, P. H. S. Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, and A. Mustapha, “Data quality: A survey of data quality dimensions,” in 2012 international conference on information retrieval & knowledge management, 2012, pp. 300–304.
[10] V. Tra, M. Amayri, and N. Bouguila, “Outlier detection via multiclass deep autoencoding gaussian mixture model for building chiller diagnosis,” Energy and Buildings, p. 111893, 2022.
[11] Z. Wang, L. Wang, Y. Tan, and J. Yuan, “Fault detection based on bayesian network and missing data imputation for building energy systems,” Applied Thermal Engineering, vol. 182, p. 116051, 2021.
[12] B. Li, F. Cheng, X. Zhang, C. Cui, and W. Cai, “A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data,” Applied Energy, vol. 285, p. 116459, 2021.
[13] Z. Ferdousi and A. Maeda, “Unsupervised outlier detection in time series data,” in 22nd international conference on data engineering workshops (ICDEW’06), 2006, pp. x121–x121.
[14] J. Jabez and B. Muthukumar, “Intrusion detection system (IDS): Anomaly detection using outlier detection approach,” Procedia Computer Science, vol. 48, pp. 338–346, 2015.
[15] M. Goldstein and A. Dengel, “Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm,” KI-2012: poster and demo track, vol. 9, 2012.
[16] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine Learning, vol. 102, no. 2, pp. 275–304, 2016.
[17] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “COPOD: Copula-based outlier detection,” in 2020 IEEE international conference on data mining (ICDM), 2020, pp. 1118–1123.
[18] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 6, no. 1, pp. 1–39, 2012.
[19] H.-P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection in high-dimensional data,” in Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, 2008, pp. 444–452.
[20] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.
[21] D. A. Reynolds, “Gaussian mixture models.” Encyclopedia of biometrics, vol. 741, no. 659–663, 2009.
[22] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, no. 4, pp. 395–416, 2007.
[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial clustering of applications with noise,” in Int. Conf. Knowledge discovery and data mining, 1996, vol. 240, p. 6.
[24] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering points to identify the clustering structure,” ACM Sigmod record, vol. 28, no. 2, pp. 49–60, 1999.
[25] L. McInnes, J. Healy, and S. Astels, “Hdbscan: Hierarchical density based clustering.” J. Open Source Softw., vol. 2, no. 11, p. 205, 2017.
[26] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.
[27] K. P. Murphy, Machine learning: A probabilistic perspective. MIT press, 2012.
[28] R. W. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE Signal processing magazine, vol. 28, no. 4, pp. 111–117, 2011.
[29] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern recognition letters, vol. 24, no. 9–10, pp. 1641–1650, 2003.
[30] D. Dua and C. Graff, “UCI machine learning repository.” University of California, Irvine, School of Information; Computer Sciences, 2017.
[31] G. H. Dunteman, Principal components analysis. Sage, 1989.
[32] Zhao, Y., Nasrullah, Z. and Li, Z., 2019. PyOD: A Python Toolbox for Scalable Outlier Detection. Journal of machine learning research (JMLR), 20(96), pp.1-7.
[33] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional spaces,” in European conference on principles of data mining and knowledge discovery, 2002, pp. 15–27.
[34] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly detection scheme based on principal component classifier,” Miami Univ Coral Gables Fl Dept of Electrical; Computer Engineering, 2003.
指導教授 王文俊 審核日期 2022-5-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明