博碩士論文 105383004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.144.3.183
姓名 謝玉玲(Yu-Ling Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 二維半導體黑磷烯之穩定性研究與其在電晶體及新興記憶體的元件應用
(Stabilization of 2D Semiconductor Black Phosphorus for the Application in the Field Effect Transistor and Emerging Memory)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二維材料 (2D materials) 由於其許多優越特性,包括原子尺度下仍保有的高載子遷移率、可饒性與層狀結構,已成為未來光電元件的候選材料,具備微縮與異質整合優勢。儘管許多的二維材料被廣泛探索,例如過渡金屬二硫屬化物 (TMDC),但每種材料皆有其獨特特性與適合的多元應用,例如:黑磷烯 (BP) 是具有隨厚度變化保有直接能隙的二維材料 (0.3 eV~2 eV),以及應用於電晶體 (FET) 有高達一千以上的電洞載子遷移率,然而,黑磷有一般環境下不穩定的材料特性,大幅限制其奈米元件的實際應用。
此論文的第一部分,提出利用氟化物可有效且大面積保護少層黑磷的方法,達到超過五個月的長時效穩定性,其中有兩個關鍵因素:(1) 緻密的保護層阻隔了大氣中的水氧分子。(2) 氟化黑磷穩定了材料表面並抑制氧化。此外,藉由進一步超音波震盪過程,可獲得選擇性的氟化黑磷,並將其製作成可靠的氟化黑磷電晶體,可於一般環境下操作達到超過一周的穩定性,相比於原始黑磷電晶體更提昇大於十倍的輸出電流。
第二部分探討溶液處理的黑磷奈米片並將其應用於新興記憶體,有電阻式記憶體 (RRAM) 和類神經憶阻器 (Memristor)。電阻式記憶體具有非揮發性、102的高開/關比和長達1500秒的時效性。除此之外,亦介紹利用三聚氰胺輔助液相剝離 (LPE) 二維材料的新穎方法,可有效率地剝離出高結晶品質的黑磷奈米片,並且進一步利用超分子自組裝,直接獲取黑磷奈米片連同自組裝的超分子,接著將包含黑磷奈米片的超分子製作成憶阻器與單向選擇器 (Selector)。憶阻器通過施加掃描和脈衝電壓表現出類比電阻轉換行為,並呈現增強與抑制作用行為。以及研究不同結構建構的閾值開關 (TS) 選擇器,表現高非線性達30 mV/dec,和高達104的電阻開/關比與超過 4000 秒的長時效性。更重要的是,透過擬合數據和材料鑑定,探討電阻轉換的傳輸機制,其中黑磷奈米片提供了主動層中電荷載子的傳導路徑。
摘要(英) Two-dimensional (2D) materials are one of the promising candidates for future optoelectronics due to their superior properties, including high field-effect mobility within atomic thickness, flexibility, and layered structure, which have benefits of scaling and hetero-integration. Although lots of 2D semiconductors have been widely explored, such as transition metal dichalcogenide (TMDC), each 2D materials have unique characteristics and are readily applied to various applications; for instance, black phosphorus (BP) is one of the 2D materials having thickness-dependent direct bandgap (0.3 eV~2 eV) and high hole mobility up to 103 cm2V-1s-1 in BP-based field-effect transistor (FET), but suffering from its great weakness of instability, which limits its practical applications on nanodevices.
In the first part of this study, an effective and scalable pathway was introduced to protect few-layer BP with the hydrophobic fluorinated compound, achieving long-term stability over five months because of two key factors: (1) A condensed passivation layer which isolates the oxygen and water molecules in air. (2) Fluorination of BP which stabilizes the surface of BP to inhibit oxidation. Moreover, the selectively fluorinated BP was demonstrated through further ultrasonication process, and then fabricated for fluorinated BP FET with the reliable transistor applications in ambient conditions, presenting stabilized properties over one week and the enhanced output current larger than ten times compared to the pristine BP FET.
For the second part, the solution-processed BP nanosheets were explored and applied to the emerging memory, namely resistive random-access memory (RRAM) and memristor. The RRAM exhibited the non-volatile property and high on/off ratio of 102, as well as long retention time up to 1500 s. In addition, the novel method to exfoliate highly crystalline BP by melamine-assisted liquid-phase exfoliation (LPE) was introduced, and BP nanosheets together with supramolecular assembly could be directly extracted. Afterward, the incorporated BP nanosheets with supramolecules were integrated into the memristor and unidirectional selector, where the memristor presented analog resistive switching behaviors as well as potentiation and depression by applying both voltage sweeping and pulse. The threshold switching (TS) selector constructed by different structures was also investigated, displaying the nonlinearity of 30 mV/dec, high on/off resistance ratio up to 104, and long retention time over 4000 s. Most importantly, the transport mechanisms of the memories were unveiled through fitting data and material identification where BP nanosheets served as conducting paths for the transport of charge carriers in the active layer.
關鍵字(中) ★ 二維材料
★ 奈米元件
★ 黑磷烯
關鍵字(英) ★ Two-dimensional (2D) materials
★ Nanodevices
★ Black phosphorus
論文目次 Table of Contents
中文摘要 i
Abstract ii
誌謝 iii
List of Figures vi
List of Tables xv
Chapter 1. Introduction 1
1.1 Background of 2D materials 1
1.2 Research motivation 3
Chapter 2. 2D Semiconductor: Black Phosphorus 4
2.1 Characteristics of black phosphorus 4
2.2 Synthesis of BP: “bottom-up” and “top-down” methods 9
2-3 Instability and strategies to stabilize or protect BP 16
Chapter 3. 2D Semiconductor on Applications of Emerging Devices 22
3.1 Field-effect transistor (FET) and beyond Moore’s law with 2D semiconductors 22
3.2 Monolithic 3D integrated circuits (3D ICs) and resistive random-access memory (RRAM) 29
3.3 Memristor as artificial synapse for neuromorphic electronics 37
Chapter 4. Experimental Details 43
4.1 PFSA Passivation on the mechanically exfoliated BP (Route 1) and selectively fluorinated BP covered by an ultrathin PFSA layer (Route 2) 43
4.2 Liquid-phase exfoliation (LPE) of BP 45
4.2.1 LPE of BP in NMP solution 45
4.2.2 Melamine-assisted LPE of BP in aqueous solution 45
4.3 Material Characterizations 47
4.3.1 Mechanically exfoliated BP flakes 47
4.3.2 Liquid-phase exfoliated BP sheets 48
4.4 Fabrication of varied devices 49
4.4.1 FET of fluorinated BP 49
4.4.2 RRAM based on BP embedded in PS 49
4.4.3 Memristor and unidirectional selector based on BP in supramolecular assemblies 50
Chapter 5. Fluorinated Stabilization of Mechanical Exfoliated BP and Application of FET 51
5.1 Effective passivation of BP flakes by PFSA fluoride compound (Route 1) 51
5.2 In-situ cleaning and selective fluorination on BP (Route 2) 56
5.3 Properties and stability of fluorinated BP FET 64
5.4 Conclusion 69
Chapter 6. Liquid-Phase Exfoliated BP for the Nonvolatile Resistive Random-Access Memory (RRAM) and the Mechanism Unveiled 70
6.1 Synthesis of BP nanosheets by LPE 70
6.2 Al/BP:PS/Al for metal-insulator-metal (MIM) RRAM 73
6.3 Transport mechanism of RRAM composed by the active layer of BP:PS 76
6.4 Conclusion 81
Chapter 7. Highly Efficient Exfoliation of BP by Melamine-Assisted LPE and Integration into Memristor with Supramolecular Assembly 82
7.1 Melamine-assisted LPE of BP nanosheets in aqueous solution 82
7.2 Supramolecular assembly incorporated BP as artificial synapse memristors 90
7.3 Conclusion 96
Chapter 8. Conclusions 97
References 98
Biography 115
參考文獻 References
[1] Novoselov, K. S.; Geim, A. K.; Morozov, S.V; Jiang, D.; Zhang, Y.; Dubonos, S.V; Grigorieva, I.V; Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films. Science (80-. ). 2004, 306 (5696), 666–669.
[2] Ajayan, P.; Kim, P.; Banerjee, K.Two-Dimensional van Der Waals Materials. Phys. Today 2016, 69 (9), 38–44.
[3] Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; Sindoro, M.; Zhang, H.Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117 (9), 6225–6331.
[4] Glavin, N. R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P. M.Emerging Applications of Elemental 2D Materials. Adv. Mater. 2020, 32 (7), 1904302.
[5] Kim, S.; Kwak, J.; Ciobanu, C.V.; Kwon, S.Recent Developments in Controlled Vapor‐Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Adv. Mater. 2019, 31 (20), 1804939.
[6] Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J.Scalable Exfoliation and Dispersion of Two-Dimensional Materials – an Update. Phys. Chem. Chem. Phys. 2017, 19 (2), 921–960.
[7] Kang, J.; Sangwan, V. K.; Wood, J. D.; Hersam, M. C.Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017, 50 (4), 943–951.
[8] Geim, A. K.; Grigorieva, I.V.Van Der Waals Heterostructures. Nature 2013, 499 (7459), 419–425.
[9] Liu, Y.; Huang, Y.; Duan, X.Van Der Waals Integration before and beyond Two-Dimensional Materials. Nature 2019, 567 (7748), 323–333.
[10] Kumar, A.; Yagodkin, D.; Stetzuhn, N.; Kovalchuk, S.; Melnikov, A.; Elliott, P.; Sharma, S.; Gahl, C.; Bolotin, K. I.Spin/Valley Coupled Dynamics of Electrons and Holes at the MoS2–MoSe2 Interface. Nano Lett. 2021, 21 (17), 7123–7130.
[11] Kum, H.; Lee, D.; Kong, W.; Kim, H.; Park, Y.; Kim, Y.; Baek, Y.; Bae, S.-H.; Lee, K.; Kim, J.Epitaxial Growth and Layer-Transfer Techniques for Heterogeneous Integration of Materials for Electronic and Photonic Devices. Nat. Electron. 2019, 2 (10), 439–450.
[12] Luo, Y.; Wang, M.; Wan, C.; Cai, P.; Loh, X. J.; Chen, X.Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. Adv. Mater. 2020, 32 (37), 2001903.
[13] Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M. I.; Goossens, S.; Li, L.-J.; Wong, H. S. P.; Koppens, F. H. L.Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573 (7775), 507–518.
[14] Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J.Disorder in van Der Waals Heterostructures of 2D Materials. Nat. Mater. 2019, 18 (6), 541–549.
[15] Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y.Black Phosphorus Field-Effect Transistors. Nat Nanotechnol 2014, 9 (5), 372–377.
[16] Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D.Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8 (4), 4033–4041.
[17] Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B.Electric Field Effect in Ultrathin Black Phosphorus. Appl. Phys. Lett. 2014, 104 (10), 103106.
[18] Xia, F.; Wang, H.; Jia, Y.Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014, 5 (1), 4458.
[19] Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J.V; Zandbergen, H. W.; Palacios, J. J.; van derZant, H. S. J.Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014, 1 (2), 25001.
[20] Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H.Oxygen Defects in Phosphorene. Phys. Rev. Lett. 2015, 114 (4), 46801.
[21] Joshua, O. I.; Gary, A. S.; Herre, S. J. van der Z.; Andres, C.-G.Environmental Instability of Few-Layer Black Phosphorus. 2D Mater. 2015, 2 (1), 11002.
[22] Sruthi, K.; Taimur, A.; Sivacarendran, B.; Vipul, B.; Sharath, S.; Madhu, B.; Sumeet, W.Black Phosphorus: Ambient Degradation and Strategies for Protection. 2D Mater. 2018, 5 (3), 32001.
[23] Wang, G.; Pandey, R.; Karna, S. P.Phosphorene Oxide: Stability and Electronic Properties of a Novel Two-Dimensional Material. Nanoscale 2015, 7 (2), 524–531.
[24] Bridgman, P. W.TWO NEW MODIFICATIONS OF PHOSPHORUS. J. Am. Chem. Soc. 1914, 36 (7), 1344–1363.
[25] Ling, X.; Liang, L.; Huang, S.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S.Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Lett. 2015, 15 (6), 4080–4088.
[26] Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; deSouza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; deMatos, C. J. S.Edge Phonons in Black Phosphorus. Nat. Commun. 2016, 7 (1), 12191.
[27] Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J.-A.; Lo, C.; Yang, L.Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene. Nano Lett. 2014, 14 (11), 6393–6399.
[28] Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F.Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10 (6), 517–521.
[29] Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W.High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nat. Commun. 2014, 5 (1), 4475.
[30] Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S.Observation of Tunable Band Gap and Anisotropic Dirac Semimetal State in Black Phosphorus. Science (80-. ). 2015, 349 (6249), 723–726.
[31] Li, L.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; daJornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F.; Watanabe, K.; Taniguchi, T.; Ren, W.; Louie, S. G.; Chen, X. H.; Zhang, Y.; Wang, F.Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017, 12 (1), 21–25.
[32] Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S.The Renaissance of Black Phosphorus. Proc. Natl. Acad. Sci. 2015, 112 (15), 4523–4530.
[33] Feng, X.; Huang, X.; Chen, L.; Tan, W. C.; Wang, L.; Ang, K.-W.High Mobility Anisotropic Black Phosphorus Nanoribbon Field-Effect Transistor. Adv. Funct. Mater. 2018, 28 (28), 1801524.
[34] Long, G.; Maryenko, D.; Shen, J.; Xu, S.; Hou, J.; Wu, Z.; Wong, W. K.; Han, T.; Lin, J.; Cai, Y.; Lortz, R.; Wang, N.Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Lett. 2016, 16 (12), 7768–7773.
[35] Cheng, H.; Zehua, H.; Alexandra, C.; Na, G.; Jialin, Z.; Fang, H.; Du, X.; Jing, W.; Bo, L.; Li, W.; Chun, Z.; Neto, A. H. C.; Wei, C.Oxygen Induced Strong Mobility Modulation in Few-Layer Black Phosphorus. 2D Mater. 2017, 4 (2), 21007.
[36] Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y.; Lanza, M.Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects. Adv. Funct. Mater. 2020, 30 (18), 1901971.
[37] Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N. J.; Yuan, H.; Fullerton-Shirey, S. K.; Chernikov, A.; Zhao, H.; McDonnell, S.; Lindenberg, A. M.; Xiao, K.; LeRoy, B. J.; Drndić, M.; Hwang, J. C. M.; Park, J.; Chhowalla, M.; Schaak, R. E.; Javey, A.; Hersam, M. C.; Robinson, J.; Terrones, M.2D Materials Advances: From Large Scale Synthesis and Controlled Heterostructures to Improved Characterization Techniques, Defects and Applications. 2D Mater. 2016, 3 (4), 042001.
[38] Tong, X.; Liu, K.; Zeng, M.; Fu, L.Vapor‐phase Growth of High‐quality Wafer‐scale Two‐dimensional Materials. InfoMat 2019, 1 (4), 460–478.
[39] Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z.; Ou, J. Z.Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12 (1), 66.
[40] Zhou, D.; Li, H.; Si, N.; Li, H.; Fuchs, H.; Niu, T.Epitaxial Growth of Main Group Monoelemental 2D Materials. Adv. Funct. Mater. 2021, 31 (6), 2006997.
[41] Gao, J.; Zhang, G.; Zhang, Y. W.The Critical Role of Substrate in Stabilizing Phosphorene Nanoflake: A Theoretical Exploration. J. Am. Chem. Soc. 2016, 138 (14), 4763–4771.
[42] Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z.Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. small 2016, 12 (26), 3480–3502.
[43] Nilges, T.; Kersting, M.; Pfeifer, T.A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181 (8), 1707–1711.
[44] Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T.Access and in Situ Growth of Phosphorene-Precursor Black Phosphorus. J. Cryst. Growth 2014, 405, 6–10.
[45] Zhao, M.; Niu, X.; Guan, L.; Qian, H.; Wang, W.; Sha, J.; Wang, Y.Understanding the Growth of Black Phosphorus Crystals. CrystEngComm 2016, 18 (40), 7737–7744.
[46] Zhao, M.; Qian, H.; Niu, X.; Wang, W.; Guan, L.; Sha, J.; Wang, Y.Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Cryst. Growth Des. 2016, 16 (2), 1096–1103.
[47] Li, W.; Li, M.; Li, J.; Liang, J.; Adair, K. R.; Hu, Y.; Xiao, Q.; Cui, X.; Li, R.; Brandys, F.; Divigalpitiya, R.; Sham, T. K.; Sun, X.Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Appl. Nano Mater. 2020, 3 (8), 7508–7515.
[48] Kitada, S.; Shimizu, N.; Hossain, M. Z.Safe and Fast Synthesis of Black Phosphorus and Its Purification. ACS Omega 2020, 5 (20), 11389–11393.
[49] Li, C.; Wu, Y.; Deng, B.; Xie, Y.; Guo, Q.; Yuan, S.; Chen, X.; Bhuiyan, M.; Wu, Z.; Watanabe, K.; Taniguchi, T.; Wang, H.; Cha, J. J.; Snure, M.; Fei, Y.; Xia, F.Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire. Adv. Mater. 2018, 30 (6), 1–8.
[50] Jiang, Q.; Xu, L.; Chen, N.; Zhang, H.; Dai, L.; Wang, S.Facile Synthesis of Black Phosphorus: An Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angew. Chemie - Int. Ed. 2016, 55 (44), 13849–13853.
[51] Li, X.; Deng, B.; Wang, X.; Chen, S.; Vaisman, M.; Karato, S. I.; Pan, G.; Lee, M. L.; Cha, J.; Wang, H.; Xia, F.Synthesis of Thin-Film Black Phosphorus on a Flexible Substrate. 2D Mater. 2015, 2 (3), 31002.
[52] Ozawa, A.; Yamamoto, M.; Tanabe, T.; Hosokawa, S.; Yoshida, T.Black Phosphorus Synthesized by Solvothermal Reaction from Red Phosphorus and Its Catalytic Activity for Water Splitting. J. Mater. Chem. A 2020, 8 (15), 7368–7376.
[53] Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P.Field-Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Adv. Mater. 2015, 27 (25), 3748–3754.
[54] Izquierdo, N.; Myers, J. C.; Seaton, N. C. A.; Pandey, S. K.; Campbell, S. A.Thin-Film Deposition of Surface Passivated Black Phosphorus. ACS Nano 2019, 13 (6), 7091–7099.
[55] Xu, Y.; Shi, X.; Zhang, Y.; Zhang, H.; Zhang, Q.; Huang, Z.; Xu, X.; Guo, J.; Zhang, H.; Sun, L.; Zeng, Z.; Pan, A.; Zhang, K.Epitaxial Nucleation and Lateral Growth of High-Crystalline Black Phosphorus Films on Silicon. Nat. Commun. 2020, 11 (1), 1–8.
[56] Han, D.; Liu, Q.; Zhang, Q.; Ji, J.; Sang, S.; Xu, B.Synthesis of Highly Crystalline Black Phosphorus Thin Films on GaN. Nanoscale 2020, 12 (48), 24429–24436.
[57] Wu, Z.; Lyu, Y.; Zhang, Y.; Ding, R.; Zheng, B.; Yang, Z.; Lau, S. P.; Chen, X. H.; Hao, J.Large-Scale Growth of Few-Layer Two-Dimensional Black Phosphorus. Nat. Mater. 2021, 20 (9), 1203–1209.
[58] Nilges, T.; Kersting, M.; Pfeifer, T.A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181 (8), 1707–1711.
[59] Zhang, L.; Wang, B.; Zhou, Y.; Wang, C.; Chen, X.; Zhang, H.Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thin‐Film Black Phosphorus. Adv. Opt. Mater. 2020, 8 (15), 2000045.
[60] Cai, X.; Luo, Y.; Liu, B.; Cheng, H.-M.Preparation of 2D Material Dispersions and Their Applications. Chem. Soc. Rev. 2018, 47 (16), 6224–6266.
[61] Thurakkal, S.; Zhang, X.Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Adv. Sci. 2020, 7 (2), 1902359.
[62] Sresht, V.; Pádua, A. A. H.; Blankschtein, D.Liquid-Phase Exfoliation of Phosphorene: Design Rules from Molecular Dynamics Simulations. ACS Nano 2015, 9 (8), 8255–8268.
[63] Kovalska, E.; Luxa, J.; Hartman, T.; Antonatos, N.; Shaban, P.; Oparin, E.; Zhukova, M.; Sofer, Z.Non-Aqueous Solution-Processed Phosphorene by Controlled Low-Potential Electrochemical Exfoliation and Thin Film Preparation. Nanoscale 2020, 12 (4), 2638–2647.
[64] Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J.-H.; Liu, X.; Chen, K.-S.; Hersam, M. C.Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9 (4), 3596–3604.
[65] Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A.Production of Phosphorene Nanoribbons. Nature 2019, 568 (7751), 216–220.
[66] Feng, Y.; Yang, X.; Zhang, Z.; Kang, D.; Zhang, J.; Liu, K.; Li, X.; Shen, J.; Liu, F.; Wang, T.; Ji, P.; Xu, F.; Tang, N.; Yu, T.; Wang, X.; Yu, D.; Ge, W.; Shen, B.Epitaxy of Single‐Crystalline GaN Film on CMOS‐Compatible Si(100) Substrate Buffered by Graphene. Adv. Funct. Mater. 2019, 29 (42), 1905056.
[67] Zhu, J.; Xiao, G.; Zuo, X.Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries. Nano-Micro Lett. 2020, 12 (1), 120.
[68] Geier, M. L.; McMorrow, J. J.; Xu, W.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C.Solution-Processed Carbon Nanotube Thin-Film Complementary Static Random Access Memory. Nat. Nanotechnol. 2015, 10 (11), 944–948.
[69] Qu, G.; Xia, T.; Zhou, W.; Zhang, X.; Zhang, H.; Hu, L.; Shi, J.; Yu, X.-F.; Jiang, G.Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chem. Rev. 2020, 120 (4), 2288–2346.
[70] Long, C.; Guangmin, Z.; Zhibo, L.; Xiaomeng, M.; Jing, C.; Zhiyong, Z.; Xiuliang, M.; Feng, L.; Hui-Ming, C.; Wencai, R.Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery. Adv. Mater. 2016, 28 (3), 510–517.
[71] Matthews, P. D.; Hirunpinyopas, W.; Lewis, E. A.; Brent, J. R.; McNaughter, P. D.; Zeng, N.; Thomas, A. G.; O’Brien, P.; Derby, B.; Bissett, M. A.; Haigh, S. J.; Dryfe, R. A. W.; Lewis, D. J.Black Phosphorus with Near-Superhydrophobic Properties and Long-Term Stability in Aqueous Media. Chem. Commun. 2018, 54 (31), 3831–3834.
[72] Hu, C.-X.; Shin, Y.; Read, O.; Casiraghi, C.Dispersant-Assisted Liquid-Phase Exfoliation of 2D Materials beyond Graphene. Nanoscale 2021, 13 (2), 460–484.
[73] Shin, Y.; Just-Baringo, X.; Boyes, M.; Panigrahi, A.; Zarattini, M.; Chen, Y.; Liu, X.; Morris, G.; Prestat, E.; Kostarelos, K.; Vranic, S.; Larrosa, I.; Casiraghi, C.Enhanced Liquid Phase Exfoliation of Graphene in Water Using an Insoluble Bis-Pyrene Stabiliser. Faraday Discuss. 2021, 227 (0), 46–60.
[74] Chen, L.; Zhou, G.; Liu, Z.; Ma, X.; Chen, J.; Zhang, Z.; Ma, X.; Li, F.; Cheng, H. M.; Ren, W.Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery. Adv. Mater. 2016, 28 (3), 510–517.
[75] Hsieh, Y. L.; Su, W. H.; Huang, C. C.; Su, C. Y.In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability. ACS Appl. Mater. Interfaces 2020, 12 (33), 37375–37383.
[76] Kuntz, K. L.; Wells, R. A.; Hu, J.; Yang, T.; Dong, B.; Guo, H.; Woomer, A. H.; Druffel, D. L.; Alabanza, A.; Tománek, D.; Warren, S. C.Control of Surface and Edge Oxidation on Phosphorene. ACS Appl. Mater. Interfaces 2017, 9 (10), 9126–9135.
[77] Favron, A.; Gaufres, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y.; Levesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R.Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat Mater 2015, 14 (8), 826–832.
[78] Miriam, M.-M.; Guillermo, L.-P.; Andres, C.-G.; Cristina, G.-N.; Julio, G.-H.Environmental Effects in Mechanical Properties of Few-Layer Black Phosphorus. 2D Mater. 2016, 3 (3), 31007.
[79] Andrey, A. K.; Yongqing, C.; Kun, Z.; Sergey, V. D.; Yong-Wei, Z.The Role of H 2 O and O 2 Molecules and Phosphorus Vacancies in the Structure Instability of Phosphorene. 2D Mater. 2017, 4 (1), 15010.
[80] Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J.; Ji, W.; Ruoff, R. S.; Sutter, P.Interaction of Black Phosphorus with Oxygen and Water. Chem. Mater. 2016, 28 (22), 8330–8339.
[81] Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-Laheureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R.Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14 (8), 826–832.
[82] Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C.Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014, 14 (12), 6964–6970.
[83] Liu, X.; Chen, K.; Li, X.; Xu, Q.; Weng, J.; Xu, J.Electron Matters: Recent Advances in Passivation and Applications of Black Phosphorus. Adv. Mater. 2021, 2005924, 2005924.
[84] Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J.Recent Advances in Oxidation and Degradation Mechanisms of Ultrathin 2D Materials under Ambient Conditions and Their Passivation Strategies. J. Mater. Chem. A 2019, 7 (9), 4291–4312.
[85] vanDruenen, M.Degradation of Black Phosphorus and Strategies to Enhance Its Ambient Lifetime. Adv. Mater. Interfaces 2020, 7 (22), 2001102.
[86] Wan, D.; Huang, H.; Wang, Z.; Liu, X.; Liao, L.Recent Advances in Long-Term Stable Black Phosphorus Transistors. Nanoscale 2020, 12 (39), 20089–20099.
[87] Wang, F.; Wang, Z.; Yin, L.; Cheng, R.; Wang, J.; Wen, Y.; Shifa, T. A.; Wang, F.; Zhang, Y.; Zhan, X.; He, J.2D Library beyond Graphene and Transition Metal Dichalcogenides: A Focus on Photodetection. Chem. Soc. Rev. 2018, 47 (16), 6296–6341.
[88] Yohannes, A.; Deji, A.; Sampath, G.; Han, W.; Michael, S.; Nirakar, P.; B., C. S.Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30 (29), 1704749.
[89] Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J.-S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T.Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano 2016, 10 (10), 9543–9549.
[90] Galceran, R.; Gaufres, E.; Loiseau, A.; Piquemal-Banci, M.; Godel, F.; Vecchiola, A.; Bezencenet, O.; Martin, M.-B.; Servet, B.; Petroff, F.; Dlubak, B.; Seneor, P.Stabilizing Ultra-Thin Black Phosphorus with in-Situ-Grown 1 Nm-Al2O3 Barrier. Appl. Phys. Lett. 2017, 111 (24), 243101.
[91] Kim, D.-K.; Chae, J.; Hong, S.-B.; Park, H.; Jeong, K.-S.; Park, H.-W.; Kwon, S.-R.; Chung, K.-B.; Cho, M.-H.Interface Engineering for a Stable Chemical Structure of Oxidized-Black Phosphorus via Self-Reduction in AlOx Atomic Layer Deposition. Nanoscale 2018, 10 (48), 22896–22907.
[92] Kim, J.; Baek, S. K.; Kim, K. S.; Chang, Y. J.; Choi, E. J.Long-Term Stability Study of Graphene-Passivated Black Phosphorus under Air Exposure. Curr. Appl. Phys. 2016, 16 (2), 165–169.
[93] Doganov, R. A.; O’Farrell, E. C. T.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B.Transport Properties of Pristine Few-Layer Black Phosphorus by van Der Waals Passivation in an Inert Atmosphere. Nat. Commun. 2015, 6 (1), 6647.
[94] Ra, H.-S.; Lee, A. Y.; Kwak, D.-H.; Jeong, M.-H.; Lee, J.-S.Dual-Gate Black Phosphorus Field-Effect Transistors with Hexagonal Boron Nitride as Dielectric and Passivation Layers. ACS Appl. Mater. Interfaces 2018, 10 (1), 925–932.
[95] Korolkov, V.V.; Timokhin, I. G.; Haubrichs, R.; Smith, E. F.; Yang, L.; Yang, S.; Champness, N. R.; Schröder, M.; Beton, P. H.Supramolecular Networks Stabilise and Functionalise Black Phosphorus. Nat. Commun. 2017, 8 (1), 1385.
[96] -He, D.; Wang, Y.; Huang, Y.; Shi, Y.; Wang, X.; Duan, X.High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. Nano Lett. 2019, 19 (1), 331–337.
[97] Li, X.; Wu, J.; Ye, Y.; Li, S.; Li, T.; Xiong, X.; Xu, X.; Gao, T.; Xie, X.; Wu, Y.Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Appl. Mater. Interfaces 2019, 11 (1), 1587–1594.
[98] Wang, H.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z.; Li, Z.Black Phosphorus Nanosheets Passivation Using a Tripeptide. small 2018, 14 (35), 1801701.
[99] Fan, S.; Qiao, J.; Lai, J.; Hei, H.; Feng, Z.; Zhang, Q.; Zhang, D.; Wu, S.; Hu, X.; Sun, D.; Ji, W.; Liu, J.Wet Chemical Method for Black Phosphorus Thinning and Passivation. ACS Appl. Mater. Interfaces 2019, 11 (9), 9213–9222.
[100] He, L.; Lian, P.; Zhu, Y.; Zhao, J.; Mei, Y.Heteroatom-Doped Black Phosphorus and Its Application: A Review. Chinese J. Chem. 2021, 39 (3), 690–700.
[101] Hu, H.; Shi, Z.; Khan, K.; Cao, R.; Liang, W.; Tareen, A. K.; Zhang, Y.; Huang, W.; Guo, Z.; Luo, X.; Zhang, H.Recent Advances in Doping Engineering of Black Phosphorus. J. Mater. Chem. A 2020, 8 (11), 5421–5441.
[102] Fan, S.; Shen, W.; Liu, J.; Hei, H.; Hu, R.; Hu, C.; Zhang, D.; Hu, X.; Sun, D.; Chen, J.-H.; Ji, W.; Liu, J.Solution-Based Property Tuning of Black Phosphorus. ACS Appl. Mater. Interfaces 2018, 10 (46), 39890–39897.
[103] Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C.Covalent Functionalization and Passivation of Exfoliated Black Phosphorus via Aryl Diazonium Chemistry. Nat. Chem. 2016, 8 (6), 597–602.
[104] Su, C.; Yin, Z.; Yan, Q.-B.; Wang, Z.; Lin, H.; Sun, L.; Xu, W.; Yamada, T.; Ji, X.; Zettsu, N.; Teshima, K.; Warner, J. H.; Dincă, M.; Hu, J.; Dong, M.; Su, G.; Kong, J.; Li, J.Waterproof Molecular Monolayers Stabilize 2D Materials. Proc. Natl. Acad. Sci. 2019, 116 (42), 20844–20849.
[105] Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B.Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Lett. 2016, 16 (4), 2145–2151.
[106] Wang, Z.; Lu, J.; Wang, J.; Li, J.; Du, Z.; Wu, H.; Liao, L.; Chu, P. K.; Yu, X.-F.Air-Stable n-Doped Black Phosphorus Transistor by Thermal Deposition of Metal Adatoms. Nanotechnology 2019, 30 (13), 135201.
[107] Guo, Z.; Chen, S.; Wang, Z.; Yang, Z.; Liu, F.; Xu, Y.; Wang, J.; Yi, Y.; Zhang, H.; Liao, L.; Chu, P. K.; Yu, X.-F.Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Adv. Mater. 2017, 29 (42), 1703811.
[108] Li, M.; Li, W.; Chen, N.; Liang, J.; Liu, Y.; Norouzi Banis, M.; Li, J.; Xiao, Y.; Gao, X.; Hu, Y.; Xiao, Q.; Doyle-Davis, K.; Liu, Y.; Yiu, Y. M.; Li, D.; Liu, S.; Li, R.; Brandys, F.; Divigalpitiya, R.; Sham, T.-K.; Sun, X.Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chem. Mater. 2021, 33 (6), 2029–2036.
[109] Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y.A Phosphorene–Graphene Hybrid Material as a High-Capacity Anode for Sodium-Ion Batteries. Nat Nano 2015, 10 (11), 980–985.
[110] Kim, D.-K.; Hong, S.-B.; Jeong, K.; Lee, C.; Kim, H.; Cho, M.-H.P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. ACS Nano 2019, 13 (2), 1683–1693.
[111] Lv, W.; Yang, B.; Wang, B.; Wan, W.; Ge, Y.; Yang, R.; Hao, C.; Xiang, J.; Zhang, B.; Zeng, Z.; Liu, Z.Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Appl. Mater. Interfaces 2018, 10 (11), 9663–9668.
[112] Han, C.; Hu, Z.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D.; Wang, L.; Huo, F.; Huang, W.; Loh, K. P.; Chen, W.Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Lett. 2017, 17 (7), 4122–4129.
[113] Martin, Z.The Chips Are Down. New Sci. 1999, 164 (2206), 58.
[114] Mack, C. A.Fifty Years of Moore’s Law. IEEE Trans. Semicond. Manuf. 2011, 24 (2), 202–207.
[115] Thompson, S. E.; Parthasarathy, S.Moore’s Law: The Future of Si Microelectronics. Mater. Today 2006, 9 (6), 20–25.
[116] Ryckaert, J.; Na, M. H.; Weckx, P.; Jang, D.; Schuddinck, P.; Chehab, B.; Patli, S.; Sarkar, S.; Zografos, O.; Baert, R.; Verkest, D.Enabling Sub-5nm CMOS Technology Scaling Thinner and Taller!. In 2019 IEEE International Electron Devices Meeting (IEDM); IEEE, 2019; Vol. 2019-Decem, pp 29.4.1-29.4.4.
[117] Thomas, S.Nanosheet FETs at 3 Nm. Nat. Electron. 2018, 1 (12), 613.
[118] Ye, P.; Ernst, T.; Khare, V. M.The Last Silicon Transistor. IEEE Spectr. 2019, 58 (8), 31–35.
[119] Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G.Quantum Engineering of Transistors Based on 2D Materials Heterostructures. Nat. Nanotechnol. 2018, 13 (3), 183–191.
[120] Li, M.-Y.; Su, S.-K.; Wong, H.-S. P.; Li, L.-J.How 2D Semiconductors Could Extend Moore’s Law. Nature 2019, 567 (7747), 169–170.
[121] Liu, Y.; Duan, X.; Shin, H.; Park, S.; Huang, Y.; Duan, X.Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591 (March), 43–53.
[122] Liu, Y.; Duan, X.; Huang, Y.; Duan, X.Two-Dimensional Transistors beyond Graphene and TMDCs. Chem. Soc. Rev. 2018, 47 (16), 6388–6409.
[123] Schram, T.; Smets, Q.; Groven, B.; Heyne, M. H.; Kunnen, E.; Thiam, A.; Devriendt, K.; Delabie, A.; Lin, D.; Lux, M.; Chiappe, D.; Asselberghs, I.; Brus, S.; Huyghebaert, C.; Sayan, S.; Juncker, A.; Caymax, M.; Radu, I. P.WS2 Transistors on 300 Mm Wafers with BEOL Compatibility. Eur. Solid-State Device Res. Conf. 2017, 212–215.
[124] Hu, W.; Sheng, Z.; Hou, X.; Chen, H.; Zhang, Z.; Zhang, D. W.; Zhou, P.Ambipolar 2D Semiconductors and Emerging Device Applications. Small Methods 2021, 5 (1), 2000837.
[125] Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L.Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573 (7775), 507–518.
[126] Shulaker, M. M.; Wu, T. F.; Sabry, M. M.; Wei, H.; Philip Wong, H.-S.; Mitra, S.Monolithic 3D Integration: A Path from Concept to Reality. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015; IEEE Conference Publications: New Jersey, 2015; pp 1197–1202.
[127] Radu, I.; Nguyen, B.-Y.; Gaudin, G.; Mazure, C.3D Monolithic Integration: Stacking Technology and Applications. In 2015 International Conference on IC Design & Technology (ICICDT); IEEE, 2015; pp 1–3.
[128] Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D. W.; Liu, M.; Zhou, P.Two-Dimensional Materials for next-Generation Computing Technologies. Nat. Nanotechnol. 2020, 15 (7), 545–557.
[129] Mitta, S. B.; Choi, M. S.; Nipane, A.; Ali, F.; Kim, C.; Teherani, J. T.; Hone, J.; Yoo, W. J.Electrical Characterization of 2D Materials-Based Field-Effect Transistors. 2D Mater. 2020, 8 (1), 012002.
[130] Nielsen, P. H.; Bashara, N. M.The Reversible Voltage-Induced Initial Resistance in the Negative Resistance Sandwich Structure. IEEE Trans. Electron Devices 1964, 11 (5), 243–244.
[131] Lee, J. S.; Lee, S.; Noh, T. W.Resistive Switching Phenomena: A Review of Statistical Physics Approaches. Appl. Phys. Rev. 2015, 2 (3), 031303.
[132] Villena, M. A.; Roldán, J. B.; Jiménez-Molinos, F.; Miranda, E.; Suñé, J.; Lanza, M.$${ SIM}^2{ RRAM}$$ S I M 2 R R A M : A Physical Model for RRAM Devices Simulation. J. Comput. Electron. 2017, 16 (4), 1095–1120.
[133] Rehman, M. M.; Rehman, H. M. M. U.; Gul, J. Z.; Kim, W. Y.; Karimov, K. S.; Ahmed, N.Decade of 2D-Materials-Based RRAM Devices: A Review. Sci. Technol. Adv. Mater. 2020, 21 (1), 147–186.
[134] Villena, M. A.; Roldán, J. B.; Jiménez-Molinos, F.; Miranda, E.; Suñé, J.; Lanza, M.$${ SIM}^2{ RRAM}$$ S I M 2 R R A M : A Physical Model for RRAM Devices Simulation. J. Comput. Electron. 2017, 16 (4), 1095–1120.
[135] Chiang, C. C.; Ostwal, V.; Wu, P.; Pang, C. S.; Zhang, F.; Chen, Z.; Appenzeller, J.Memory Applications from 2D Materials. Appl. Phys. Rev. 2021, 8 (2).
[136] Ge, R.; Wu, X.; Kim, M.; Shi, J.; Sonde, S.; Tao, L.; Zhang, Y.; Lee, J. C.; Akinwande, D.Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Lett. 2018, 18 (1), 434–441.
[137] Yin, L.; Cheng, R.; Wen, Y.; Liu, C.; He, J.Emerging 2D Memory Devices for In-Memory Computing. Adv. Mater. 2021, 33 (29), 1–27.
[138] Han, S.; Hu, L.; Wang, X.; Zhou, Y.; Zeng, Y.; Ruan, S.; Pan, C.; Peng, Z.Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Adv. Sci. 2017, 4 (8), 1600435.
[139] Zhou, Y.; Liu, D.; Wang, J.; Cheng, Z.; Liu, L.; Yang, N.; Liu, Y.; Xia, T.; Liu, X.; Zhang, X.; Ye, C.; Xu, Z.; Xiong, W.; Chu, P. K.; Yu, X.-F.Black Phosphorus Based Multicolor Light-Modulated Transparent Memristor with Enhanced Resistive Switching Performance. ACS Appl. Mater. Interfaces 2020, 12 (22), 25108–25114.
[140] Rehman, S.; Khan, M. F.; Aftab, S.; Kim, H.; Eom, J.; Kim, D.Thickness-Dependent Resistive Switching in Black Phosphorus CBRAM. J. Mater. Chem. C 2019, 7 (3), 725–732.
[141] Salahuddin, S.; Ni, K.; Datta, S.The Era of Hyper-Scaling in Electronics. Nat. Electron. 2018, 1 (8), 442–450.
[142] Chua, L.Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18 (5), 507–519.
[143] Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S.The Missing Memristor Found. Nature 2008, 453 (7191), 80–83.
[144] Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W.Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 2010, 10 (4), 1297–1301.
[145] Guo, T.; Sun, B.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y. N.; Wu, Y. A.From Memristive Materials to Neural Networks. ACS Appl. Mater. Interfaces 2020, 12 (49), 54243–54265.
[146] Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley and Sons, Inc., 1949. 335 p. $4.00. Sci. Educ. 1950, 34 (5), 336–337.
[147] Kim, S. J.; Kim, S. B.; Jang, H. W.Competing Memristors for Brain-Inspired Computing. iScience 2021, 24 (1), 101889.
[148] Hsieh, Y.-L.; Su, W.-H.; Huang, C.-C.; Su, C.-Y.Solution-Processed Black Phosphorus Nanoflakes for Integrating Nonvolatile Resistive Random Access Memory and the Mechanism Unveiled. Nanotechnology 2019, 30 (44), 445702.
[149] Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z.2D Material Based Synaptic Devices for Neuromorphic Computing. Adv. Funct. Mater. 2021, 31 (4), 2005443.
[150] Huh, W.; Lee, D.; Lee, C.Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Adv. Mater. 2020, 32 (51), 2002092.
[151] Sun, L.; Wang, W.; Yang, H.Recent Progress in Synaptic Devices Based on 2D Materials. Adv. Intell. Syst. 2020, 2 (5), 1900167.
[152] Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H.RRAM-Based Synapse Devices for Neuromorphic Systems. Faraday Discuss. 2019, 213 (0), 421–451.
[153] Zhu, J.; Zhang, T.; Yang, Y.; Huang, R.A Comprehensive Review on Emerging Artificial Neuromorphic Devices. Appl. Phys. Rev. 2020, 7 (1), 11312.
[154] Sangwan, V. K.; Hersam, M. C.Neuromorphic Nanoelectronic Materials. Nat. Nanotechnol. 2020, 15 (7), 517–528.
[155] Li, Y.; Ang, K.-W.Hardware Implementation of Neuromorphic Computing Using Large‐Scale Memristor Crossbar Arrays. Adv. Intell. Syst. 2021, 3 (1), 2000137.
[156] Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C.Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar Arrays. Nanoscale Adv. 2020, 2 (5), 1811–1827.
[157] Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S.-Y.; Colombo, L.; Bonaccorso, F.; Samorì, P.Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019, 31 (10), 1806663.
[158] Xia, Q.; Yang, J. J.Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater. 2019, 18 (4), 309–323.
[159] Gao, T.; Feng, J.; Ma, H.; Zhu, X.The Ovonic Threshold Switching Characteristics in SixTe1−x Based Selector Devices. Appl. Phys. A Mater. Sci. Process. 2018, 124 (11), 734.
[160] Hua, Q.; Wu, H.; Gao, B.; Zhao, M.; Li, Y.; Li, X.; Hou, X.; (Marvin) Chang, M.; Zhou, P.; Qian, H.A Threshold Switching Selector Based on Highly Ordered Ag Nanodots for X‐Point Memory Applications. Adv. Sci. 2019, 6 (10), 1900024.
[161] Karan, K.Interesting Facets of Surface, Interfacial, and Bulk Characteristics of Perfluorinated Ionomer Films. Langmuir 2019, 35 (42), 13489–13520.
[162] Kusoglu, A.; Weber, A. Z.New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117 (3), 987–1104.
[163] Kusoglu, A.; Kushner, D.; Paul, D. K.; Karan, K.; Hickner, M. A.; Weber, A. Z.Impact of Substrate and Processing on Confinement of Nafion Thin Films. Adv. Funct. Mater. 2014, 24 (30), 4763–4774.
[164] Ma, X.; Lu, W.; Chen, B.; Zhong, D.; Huang, L.; Dong, L.; Jin, C.; Zhang, Z.Performance Change of Few Layer Black Phosphorus Transistors in Ambient. AIP Adv. 2015, 5 (10), 107112.
[165] Luo, W.; Zemlyanov, D. Y.; Milligan, C. A.; Du, Y.; Yang, L.; Wu, Y.; Ye, P. D.Surface Chemistry of Black Phosphorus under a Controlled Oxidative Environment. Nanotechnology 2016, 27 (43), 434002.
[166] Yan, Z.; He, X.; She, L.; Sun, J.; Jiang, R.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z.-H.Solvothermal-Assisted Liquid-Phase Exfoliation of Large Size and High Quality Black Phosphorus. J. Mater. 2018, 4 (2), 129–134.
[167] Gao, S.; Yi, X.; Shang, J.; Liu, G.; Li, R.-W.Organic and Hybrid Resistive Switching Materials and Devices. Chem. Soc. Rev. 2019, 48 (6), 1531–1565.
[168] Sun, Y.; Wen, D.; Bai, X.; Lu, J.; Ai, C.Ternary Resistance Switching Memory Behavior Based on Graphene Oxide Embedded in a Polystyrene Polymer Layer. Sci. Rep. 2017, 7 (1), 3938.
[169] Wang, D.; Ji, F.; Chen, X.; Li, Y.; Ding, B.; Zhang, Y.Quantum Conductance in MoS2 Quantum Dots-Based Nonvolatile Resistive Memory Device. Appl. Phys. Lett. 2017, 110 (9), 93501.
[170] Tan, C.; Liu, Z.; Huang, W.; Zhang, H.Non-Volatile Resistive Memory Devices Based on Solution-Processed Ultrathin Two-Dimensional Nanomaterials. Chem. Soc. Rev. 2015, 44 (9), 2615–2628.
[171] Zhang, X.; Xie, H.; Liu, Z.; Tan, C.; Luo, Z.; Li, H.; Lin, J.; Sun, L.; Chen, W.; Xu, Z.; Xie, L.; Huang, W.; Zhang, H.Black Phosphorus Quantum Dots. Angew. Chemie 2015, 127 (12), 3724–3728.
[172] Rani, A.; Kim, D. H.A Mechanistic Study on Graphene-Based Nonvolatile ReRAM Devices. J. Mater. Chem. C 2016, 4 (47), 11007–11031.
[173] Zhu, Y. B.; Zheng, K.; Wu, X.; Ang, L. K.Enhanced Stability of Filament-Type Resistive Switching by Interface Engineering. Sci. Rep. 2017, 7 (1), 43664.
[174] Murgatroyd, P. N.Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J. Phys. D. Appl. Phys. 1970, 3 (2), 151–156.
[175] Mark, P.; Helfrich, W.Space‐Charge‐Limited Currents in Organic Crystals. J. Appl. Phys. 1962, 33 (1), 205–215.
[176] Shi, R.; Wang, X.; Wang, Z.; Cao, L.; Song, M.; Huang, X.; Liu, J.; Huang, W.Fully Solution-Processed Transparent Nonvolatile and Volatile Multifunctional Memory Devices from Conductive Polymer and Graphene Oxide. Adv. Electron. Mater. 2017, 3 (8), 1700135.
[177] Simmons, J. G.Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems. Phys. Rev. 1967, 155 (3), 657–660.
[178] Saini, P.; Singh, M.; Thakur, J.; Patil, R.; Ma, Y. R.; Tandon, R. P.; Singh, S. P.; Mahapatro, A. K.Probing the Mechanism for Bipolar Resistive Switching in Annealed Graphene Oxide Thin Films. ACS Appl. Mater. Interfaces 2018, 10 (7), 6521–6530.
[179] Chen, Y.-C.; Chang, Y.-F.; Wu, X.; Zhou, F.; Guo, M.; Lin, C.-Y.; Hsieh, C.-C.; Fowler, B.; Chang, T.-C.; Lee, J. C.Dynamic Conductance Characteristics in HfOx-Based Resistive Random Access Memory. RSC Adv. 2017, 7 (21), 12984–12989.
[180] Kumar, A.; Das, M.; Garg, V.; Sengar, B. S.; Htay, M. T.; Kumar, S.; Kranti, A.; Mukherjee, S.Forming-Free High-Endurance Al/ZnO/Al Memristor Fabricated by Dual Ion Beam Sputtering. Appl. Phys. Lett. 2017, 110 (25), 253509.
[181] Pradhan, S. K.; Xiao, B.; Mishra, S.; Killam, A.; Pradhan, A. K.Resistive Switching Behavior of Reduced Graphene Oxide Memory Cells for Low Power Nonvolatile Device Application. Sci. Rep. 2016, 6 (1), 26763.
[182] Zhou, K.; Ding, G.; Zhang, C.; Lv, Z.; Luo, S.; Zhou, Y.; Zhou, L.; Chen, X.; Li, H.; Han, S.-T.A Solution Processed Metal–Oxo Cluster for Rewritable Resistive Memory Devices. J. Mater. Chem. C 2019, 7 (4), 843–852.
[183] Jain, R.; Singh, Y.; Cho, S. Y.; Sasikala, S. P.; Koo, S. H.; Narayan, R.; Jung, H. T.; Jung, Y.; Kim, S. O.Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chem. Mater. 2019, 31 (8), 2786–2794.
[184] Luo, F.; Wang, D.; Zhang, J.; Li, X.; Liu, D.; Li, H.; Lu, M.; Xie, X.; Huang, L.; Huang, W.Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Appl. Nano Mater. 2019, 2 (6), 3793–3801.
[185] Gusmão, R.; Sofer, Z.; Pumera, M.Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano 2018, 12 (6), 5666–5673.
[186] Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C.Stable Aqueous Dispersions of Optically and Electronically Active Phosphorene. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (42), 11688–11693.
[187] Hynes, L.; Montiel, G.; Jones, A.; Riel, D.; Abdulaziz, M.; Viva, F.; Bonetta, D.; Vreugdenhil, A.; Trevani, L.Melamine Adsorption on Carbon Materials: Impact of Carbon Texture and Surface Chemistry. Mater. Adv. 2020, 1 (2), 262–270.
[188] Zhao, H.; Xu, B.; Ding, J.; Wang, Z.; Yu, H.Natural Amino Acids: High-Efficiency Intercalants for Graphene Exfoliation. ACS Sustain. Chem. Eng. 2019, 7 (23), 18819–18825.
[189] Xia, J.; Zhu, Y.; He, Z.; Wang, F.; Wu, H.Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Appl. Mater. Interfaces 2019, 11 (18), 17068–17078.
[190] Rodríguez, A. M.; Muñoz-García, A. B.; Crescenzi, O.; Vázquez, E.; Pavone, M.Stability of Melamine-Exfoliated Graphene in Aqueous Media: Quantum-Mechanical Insights at the Nanoscale. Phys. Chem. Chem. Phys. 2016, 18 (32), 22203–22209.
[191] Chen, C. H.; Yang, S. W.; Chuang, M. C.; Woon, W. Y.; Su, C. Y.Towards the Continuous Production of High Crystallinity Graphene via Electrochemical Exfoliation with Molecular in Situ Encapsulation. Nanoscale 2015, 7 (37), 15362–15373.
[192] Lin, S.; Chui, Y.; Li, Y.; Lau, S. P.Liquid-Phase Exfoliation of Black Phosphorus and Its Applications. FlatChem 2017, 2, 15–37.
[193] Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P.Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Adv. Funct. Mater. 2019, 29 (22), 1901126.
[194] Serrano‐Ruiz, M.; Caporali, M.; Ienco, A.; Piazza, V.; Heun, S.; Peruzzini, M.The Role of Water in the Preparation and Stabilization of High‐Quality Phosphorene Flakes. Adv. Mater. Interfaces 2016, 3 (3), 1500441.
[195] Lin, S.; Liu, S.; Yang, Z.; Li, Y.; Ng, T. W.; Xu, Z.; Bao, Q.; Hao, J.; Lee, C.-S.; Surya, C.; Yan, F.; Lau, S. P.Solution-Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Adv. Funct. Mater. 2016, 26 (6), 864–871.
[196] Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q. M.; McEvoy, N.; Blau, W. J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O’Regan, D. D.; Duesberg, G. S.; Nicolosi, V.; Coleman, J. N.Liquid Exfoliation of Solvent-Stabilized Few-Layer Black Phosphorus for Applications beyond Electronics. Nat. Commun. 2015, 6 (1), 8563.
[197] Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A.High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation. Adv. Mater. 2015, 27 (11), 1887–1892.
[198] Woomer, A. H.; Farnsworth, T. W.; Hu, J.; Wells, R. A.; Donley, C. L.; Warren, S. C.Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 2015, 9 (9), 8869–8884.
[199] Li, J.; Huang, P.; Wu, F.Colorimetric Detection of Melamine Based on P-Chlorobenzenesulfonic Acid-Modified AuNPs. J. Nanoparticle Res. 2016, 18 (6), 156.
[200] Hultgren, R.; Gingrich, N. S.; Warren, B. E.The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus. J. Chem. Phys. 1935, 3 (6), 351–355.
[201] Wen, M.; Liu, D.; Kang, Y.; Wang, J.; Huang, H.; Li, J.; Chu, P. K.; Yu, X.-F.Synthesis of High-Quality Black Phosphorus Sponges for All-Solid-State Supercapacitors. Mater. Horizons 2019, 6 (1), 176–181.
[202] Liu, Z.; Sun, Y.; Cao, H.; Xie, D.; Li, W.; Wang, J.; Cheetham, A. K.Unzipping of Black Phosphorus to Form Zigzag-Phosphorene Nanobelts. Nat. Commun. 2020, 11 (1), 3917.
[203] León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E.Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions. ACS Nano 2014, 8 (1), 563–571.
[204] Korolkov, V.V; Baldoni, M.; Watanabe, K.; Taniguchi, T.; Besley, E.; Beton, P. H.Supramolecular Heterostructures Formed by Sequential Epitaxial Deposition of Two-Dimensional Hydrogen-Bonded Arrays. Nat. Chem. 2017, 9 (12), 1191–1197.
[205] Liang, Q.; Shao, B.; Tong, S.; Liu, Z.; Tang, L.; Liu, Y.; Cheng, M.; He, Q.; Wu, T.; Pan, Y.; Huang, J.; Peng, Z.Recent Advances of Melamine Self-Assembled Graphitic Carbon Nitride-Based Materials: Design, Synthesis and Application in Energy and Environment. Chem. Eng. J. 2021, 405, 126951.
[206] Seto, C. T.; Whitesides, G. M.Molecular Self-Assembly through Hydrogen Bonding: Supramolecular Aggregates Based on the Cyanuric Acid-Melamine Lattice. J. Am. Chem. Soc. 1993, 115 (3), 905–916.
[207] Chen, H.; Fraser Stoddart, J.From Molecular to Supramolecular Electronics. Nat. Rev. Mater. 2021, 6 (9), 804–828.
[208] Yao, Z.; Pan, L.; Liu, L.; Zhang, J.; Lin, Q.; Ye, Y.; Zhang, Z.; Xiang, S.; Chen, B.Simultaneous Implementation of Resistive Switching and Rectifying Effects in a Metal-Organic Framework with Switched Hydrogen Bond Pathway. Sci. Adv. 2019, 5 (8), 1–8.
[209] Zhou, L.; Yang, S.; Ding, G.; Yang, J.-Q.; Ren, Y.; Zhang, S.-R.; Mao, J.-Y.; Yang, Y.; Zhou, Y.; Han, S.-T.Tunable Synaptic Behavior Realized in C3N Composite Based Memristor. Nano Energy 2019, 58, 293–303.
[210] Tian, H.; Guo, Q.; Xie, Y.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F.; Wang, H.Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications. Adv. Mater. 2016, 28 (25), 4991–4997.
[211] Ahmed, T.; Tahir, M.; Low, M. X.; Ren, Y.; Tawfik, S. A.; Mayes, E. L. H.; Kuriakose, S.; Nawaz, S.; Spencer, M. J. S.; Chen, H.; Bhaskaran, M.; Sriram, S.; Walia, S.Fully Light‐Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus. Adv. Mater. 2021, 33 (10), 2004207.
[212] Wang, Y.; Wu, F.; Liu, X.; Lin, J.; Chen, J.-Y.; Wu, W.-W.; Wei, J.; Liu, Y.; Liu, Q.; Liao, L.High on/off Ratio Black Phosphorus Based Memristor with Ultra-Thin Phosphorus Oxide Layer. Appl. Phys. Lett. 2019, 115 (19), 193503.
[213] Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J.-Q.; Zhou, Y.; Zeng, Y.-J.; Han, S.-T.; Ruan, S.Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. Adv. Mater. 2018, 30 (30), 1801232.
[214] Gu, M.; Zhang, B.; Liu, B.; Che, Q.; Zhao, Z.; Chen, Y.Solution-Processable Black Phosphorus Nanosheets Covalently Modified with Polyacrylonitrile for Nonvolatile Resistive Random Access Memory. J. Mater. Chem. C 2020, 8 (4), 1231–1238.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2021-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明