參考文獻 |
References
[1] Novoselov, K. S.; Geim, A. K.; Morozov, S.V; Jiang, D.; Zhang, Y.; Dubonos, S.V; Grigorieva, I.V; Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films. Science (80-. ). 2004, 306 (5696), 666–669.
[2] Ajayan, P.; Kim, P.; Banerjee, K.Two-Dimensional van Der Waals Materials. Phys. Today 2016, 69 (9), 38–44.
[3] Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; Sindoro, M.; Zhang, H.Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117 (9), 6225–6331.
[4] Glavin, N. R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P. M.Emerging Applications of Elemental 2D Materials. Adv. Mater. 2020, 32 (7), 1904302.
[5] Kim, S.; Kwak, J.; Ciobanu, C.V.; Kwon, S.Recent Developments in Controlled Vapor‐Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Adv. Mater. 2019, 31 (20), 1804939.
[6] Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J.Scalable Exfoliation and Dispersion of Two-Dimensional Materials – an Update. Phys. Chem. Chem. Phys. 2017, 19 (2), 921–960.
[7] Kang, J.; Sangwan, V. K.; Wood, J. D.; Hersam, M. C.Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017, 50 (4), 943–951.
[8] Geim, A. K.; Grigorieva, I.V.Van Der Waals Heterostructures. Nature 2013, 499 (7459), 419–425.
[9] Liu, Y.; Huang, Y.; Duan, X.Van Der Waals Integration before and beyond Two-Dimensional Materials. Nature 2019, 567 (7748), 323–333.
[10] Kumar, A.; Yagodkin, D.; Stetzuhn, N.; Kovalchuk, S.; Melnikov, A.; Elliott, P.; Sharma, S.; Gahl, C.; Bolotin, K. I.Spin/Valley Coupled Dynamics of Electrons and Holes at the MoS2–MoSe2 Interface. Nano Lett. 2021, 21 (17), 7123–7130.
[11] Kum, H.; Lee, D.; Kong, W.; Kim, H.; Park, Y.; Kim, Y.; Baek, Y.; Bae, S.-H.; Lee, K.; Kim, J.Epitaxial Growth and Layer-Transfer Techniques for Heterogeneous Integration of Materials for Electronic and Photonic Devices. Nat. Electron. 2019, 2 (10), 439–450.
[12] Luo, Y.; Wang, M.; Wan, C.; Cai, P.; Loh, X. J.; Chen, X.Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. Adv. Mater. 2020, 32 (37), 2001903.
[13] Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M. I.; Goossens, S.; Li, L.-J.; Wong, H. S. P.; Koppens, F. H. L.Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573 (7775), 507–518.
[14] Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J.Disorder in van Der Waals Heterostructures of 2D Materials. Nat. Mater. 2019, 18 (6), 541–549.
[15] Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y.Black Phosphorus Field-Effect Transistors. Nat Nanotechnol 2014, 9 (5), 372–377.
[16] Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D.Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8 (4), 4033–4041.
[17] Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B.Electric Field Effect in Ultrathin Black Phosphorus. Appl. Phys. Lett. 2014, 104 (10), 103106.
[18] Xia, F.; Wang, H.; Jia, Y.Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014, 5 (1), 4458.
[19] Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J.V; Zandbergen, H. W.; Palacios, J. J.; van derZant, H. S. J.Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014, 1 (2), 25001.
[20] Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H.Oxygen Defects in Phosphorene. Phys. Rev. Lett. 2015, 114 (4), 46801.
[21] Joshua, O. I.; Gary, A. S.; Herre, S. J. van der Z.; Andres, C.-G.Environmental Instability of Few-Layer Black Phosphorus. 2D Mater. 2015, 2 (1), 11002.
[22] Sruthi, K.; Taimur, A.; Sivacarendran, B.; Vipul, B.; Sharath, S.; Madhu, B.; Sumeet, W.Black Phosphorus: Ambient Degradation and Strategies for Protection. 2D Mater. 2018, 5 (3), 32001.
[23] Wang, G.; Pandey, R.; Karna, S. P.Phosphorene Oxide: Stability and Electronic Properties of a Novel Two-Dimensional Material. Nanoscale 2015, 7 (2), 524–531.
[24] Bridgman, P. W.TWO NEW MODIFICATIONS OF PHOSPHORUS. J. Am. Chem. Soc. 1914, 36 (7), 1344–1363.
[25] Ling, X.; Liang, L.; Huang, S.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S.Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Lett. 2015, 15 (6), 4080–4088.
[26] Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; deSouza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; deMatos, C. J. S.Edge Phonons in Black Phosphorus. Nat. Commun. 2016, 7 (1), 12191.
[27] Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J.-A.; Lo, C.; Yang, L.Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene. Nano Lett. 2014, 14 (11), 6393–6399.
[28] Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F.Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10 (6), 517–521.
[29] Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W.High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nat. Commun. 2014, 5 (1), 4475.
[30] Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S.Observation of Tunable Band Gap and Anisotropic Dirac Semimetal State in Black Phosphorus. Science (80-. ). 2015, 349 (6249), 723–726.
[31] Li, L.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; daJornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F.; Watanabe, K.; Taniguchi, T.; Ren, W.; Louie, S. G.; Chen, X. H.; Zhang, Y.; Wang, F.Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017, 12 (1), 21–25.
[32] Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S.The Renaissance of Black Phosphorus. Proc. Natl. Acad. Sci. 2015, 112 (15), 4523–4530.
[33] Feng, X.; Huang, X.; Chen, L.; Tan, W. C.; Wang, L.; Ang, K.-W.High Mobility Anisotropic Black Phosphorus Nanoribbon Field-Effect Transistor. Adv. Funct. Mater. 2018, 28 (28), 1801524.
[34] Long, G.; Maryenko, D.; Shen, J.; Xu, S.; Hou, J.; Wu, Z.; Wong, W. K.; Han, T.; Lin, J.; Cai, Y.; Lortz, R.; Wang, N.Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Lett. 2016, 16 (12), 7768–7773.
[35] Cheng, H.; Zehua, H.; Alexandra, C.; Na, G.; Jialin, Z.; Fang, H.; Du, X.; Jing, W.; Bo, L.; Li, W.; Chun, Z.; Neto, A. H. C.; Wei, C.Oxygen Induced Strong Mobility Modulation in Few-Layer Black Phosphorus. 2D Mater. 2017, 4 (2), 21007.
[36] Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y.; Lanza, M.Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects. Adv. Funct. Mater. 2020, 30 (18), 1901971.
[37] Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N. J.; Yuan, H.; Fullerton-Shirey, S. K.; Chernikov, A.; Zhao, H.; McDonnell, S.; Lindenberg, A. M.; Xiao, K.; LeRoy, B. J.; Drndić, M.; Hwang, J. C. M.; Park, J.; Chhowalla, M.; Schaak, R. E.; Javey, A.; Hersam, M. C.; Robinson, J.; Terrones, M.2D Materials Advances: From Large Scale Synthesis and Controlled Heterostructures to Improved Characterization Techniques, Defects and Applications. 2D Mater. 2016, 3 (4), 042001.
[38] Tong, X.; Liu, K.; Zeng, M.; Fu, L.Vapor‐phase Growth of High‐quality Wafer‐scale Two‐dimensional Materials. InfoMat 2019, 1 (4), 460–478.
[39] Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z.; Ou, J. Z.Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12 (1), 66.
[40] Zhou, D.; Li, H.; Si, N.; Li, H.; Fuchs, H.; Niu, T.Epitaxial Growth of Main Group Monoelemental 2D Materials. Adv. Funct. Mater. 2021, 31 (6), 2006997.
[41] Gao, J.; Zhang, G.; Zhang, Y. W.The Critical Role of Substrate in Stabilizing Phosphorene Nanoflake: A Theoretical Exploration. J. Am. Chem. Soc. 2016, 138 (14), 4763–4771.
[42] Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z.Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. small 2016, 12 (26), 3480–3502.
[43] Nilges, T.; Kersting, M.; Pfeifer, T.A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181 (8), 1707–1711.
[44] Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T.Access and in Situ Growth of Phosphorene-Precursor Black Phosphorus. J. Cryst. Growth 2014, 405, 6–10.
[45] Zhao, M.; Niu, X.; Guan, L.; Qian, H.; Wang, W.; Sha, J.; Wang, Y.Understanding the Growth of Black Phosphorus Crystals. CrystEngComm 2016, 18 (40), 7737–7744.
[46] Zhao, M.; Qian, H.; Niu, X.; Wang, W.; Guan, L.; Sha, J.; Wang, Y.Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Cryst. Growth Des. 2016, 16 (2), 1096–1103.
[47] Li, W.; Li, M.; Li, J.; Liang, J.; Adair, K. R.; Hu, Y.; Xiao, Q.; Cui, X.; Li, R.; Brandys, F.; Divigalpitiya, R.; Sham, T. K.; Sun, X.Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Appl. Nano Mater. 2020, 3 (8), 7508–7515.
[48] Kitada, S.; Shimizu, N.; Hossain, M. Z.Safe and Fast Synthesis of Black Phosphorus and Its Purification. ACS Omega 2020, 5 (20), 11389–11393.
[49] Li, C.; Wu, Y.; Deng, B.; Xie, Y.; Guo, Q.; Yuan, S.; Chen, X.; Bhuiyan, M.; Wu, Z.; Watanabe, K.; Taniguchi, T.; Wang, H.; Cha, J. J.; Snure, M.; Fei, Y.; Xia, F.Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire. Adv. Mater. 2018, 30 (6), 1–8.
[50] Jiang, Q.; Xu, L.; Chen, N.; Zhang, H.; Dai, L.; Wang, S.Facile Synthesis of Black Phosphorus: An Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angew. Chemie - Int. Ed. 2016, 55 (44), 13849–13853.
[51] Li, X.; Deng, B.; Wang, X.; Chen, S.; Vaisman, M.; Karato, S. I.; Pan, G.; Lee, M. L.; Cha, J.; Wang, H.; Xia, F.Synthesis of Thin-Film Black Phosphorus on a Flexible Substrate. 2D Mater. 2015, 2 (3), 31002.
[52] Ozawa, A.; Yamamoto, M.; Tanabe, T.; Hosokawa, S.; Yoshida, T.Black Phosphorus Synthesized by Solvothermal Reaction from Red Phosphorus and Its Catalytic Activity for Water Splitting. J. Mater. Chem. A 2020, 8 (15), 7368–7376.
[53] Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P.Field-Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Adv. Mater. 2015, 27 (25), 3748–3754.
[54] Izquierdo, N.; Myers, J. C.; Seaton, N. C. A.; Pandey, S. K.; Campbell, S. A.Thin-Film Deposition of Surface Passivated Black Phosphorus. ACS Nano 2019, 13 (6), 7091–7099.
[55] Xu, Y.; Shi, X.; Zhang, Y.; Zhang, H.; Zhang, Q.; Huang, Z.; Xu, X.; Guo, J.; Zhang, H.; Sun, L.; Zeng, Z.; Pan, A.; Zhang, K.Epitaxial Nucleation and Lateral Growth of High-Crystalline Black Phosphorus Films on Silicon. Nat. Commun. 2020, 11 (1), 1–8.
[56] Han, D.; Liu, Q.; Zhang, Q.; Ji, J.; Sang, S.; Xu, B.Synthesis of Highly Crystalline Black Phosphorus Thin Films on GaN. Nanoscale 2020, 12 (48), 24429–24436.
[57] Wu, Z.; Lyu, Y.; Zhang, Y.; Ding, R.; Zheng, B.; Yang, Z.; Lau, S. P.; Chen, X. H.; Hao, J.Large-Scale Growth of Few-Layer Two-Dimensional Black Phosphorus. Nat. Mater. 2021, 20 (9), 1203–1209.
[58] Nilges, T.; Kersting, M.; Pfeifer, T.A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181 (8), 1707–1711.
[59] Zhang, L.; Wang, B.; Zhou, Y.; Wang, C.; Chen, X.; Zhang, H.Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thin‐Film Black Phosphorus. Adv. Opt. Mater. 2020, 8 (15), 2000045.
[60] Cai, X.; Luo, Y.; Liu, B.; Cheng, H.-M.Preparation of 2D Material Dispersions and Their Applications. Chem. Soc. Rev. 2018, 47 (16), 6224–6266.
[61] Thurakkal, S.; Zhang, X.Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Adv. Sci. 2020, 7 (2), 1902359.
[62] Sresht, V.; Pádua, A. A. H.; Blankschtein, D.Liquid-Phase Exfoliation of Phosphorene: Design Rules from Molecular Dynamics Simulations. ACS Nano 2015, 9 (8), 8255–8268.
[63] Kovalska, E.; Luxa, J.; Hartman, T.; Antonatos, N.; Shaban, P.; Oparin, E.; Zhukova, M.; Sofer, Z.Non-Aqueous Solution-Processed Phosphorene by Controlled Low-Potential Electrochemical Exfoliation and Thin Film Preparation. Nanoscale 2020, 12 (4), 2638–2647.
[64] Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J.-H.; Liu, X.; Chen, K.-S.; Hersam, M. C.Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9 (4), 3596–3604.
[65] Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A.Production of Phosphorene Nanoribbons. Nature 2019, 568 (7751), 216–220.
[66] Feng, Y.; Yang, X.; Zhang, Z.; Kang, D.; Zhang, J.; Liu, K.; Li, X.; Shen, J.; Liu, F.; Wang, T.; Ji, P.; Xu, F.; Tang, N.; Yu, T.; Wang, X.; Yu, D.; Ge, W.; Shen, B.Epitaxy of Single‐Crystalline GaN Film on CMOS‐Compatible Si(100) Substrate Buffered by Graphene. Adv. Funct. Mater. 2019, 29 (42), 1905056.
[67] Zhu, J.; Xiao, G.; Zuo, X.Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries. Nano-Micro Lett. 2020, 12 (1), 120.
[68] Geier, M. L.; McMorrow, J. J.; Xu, W.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C.Solution-Processed Carbon Nanotube Thin-Film Complementary Static Random Access Memory. Nat. Nanotechnol. 2015, 10 (11), 944–948.
[69] Qu, G.; Xia, T.; Zhou, W.; Zhang, X.; Zhang, H.; Hu, L.; Shi, J.; Yu, X.-F.; Jiang, G.Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chem. Rev. 2020, 120 (4), 2288–2346.
[70] Long, C.; Guangmin, Z.; Zhibo, L.; Xiaomeng, M.; Jing, C.; Zhiyong, Z.; Xiuliang, M.; Feng, L.; Hui-Ming, C.; Wencai, R.Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery. Adv. Mater. 2016, 28 (3), 510–517.
[71] Matthews, P. D.; Hirunpinyopas, W.; Lewis, E. A.; Brent, J. R.; McNaughter, P. D.; Zeng, N.; Thomas, A. G.; O’Brien, P.; Derby, B.; Bissett, M. A.; Haigh, S. J.; Dryfe, R. A. W.; Lewis, D. J.Black Phosphorus with Near-Superhydrophobic Properties and Long-Term Stability in Aqueous Media. Chem. Commun. 2018, 54 (31), 3831–3834.
[72] Hu, C.-X.; Shin, Y.; Read, O.; Casiraghi, C.Dispersant-Assisted Liquid-Phase Exfoliation of 2D Materials beyond Graphene. Nanoscale 2021, 13 (2), 460–484.
[73] Shin, Y.; Just-Baringo, X.; Boyes, M.; Panigrahi, A.; Zarattini, M.; Chen, Y.; Liu, X.; Morris, G.; Prestat, E.; Kostarelos, K.; Vranic, S.; Larrosa, I.; Casiraghi, C.Enhanced Liquid Phase Exfoliation of Graphene in Water Using an Insoluble Bis-Pyrene Stabiliser. Faraday Discuss. 2021, 227 (0), 46–60.
[74] Chen, L.; Zhou, G.; Liu, Z.; Ma, X.; Chen, J.; Zhang, Z.; Ma, X.; Li, F.; Cheng, H. M.; Ren, W.Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery. Adv. Mater. 2016, 28 (3), 510–517.
[75] Hsieh, Y. L.; Su, W. H.; Huang, C. C.; Su, C. Y.In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability. ACS Appl. Mater. Interfaces 2020, 12 (33), 37375–37383.
[76] Kuntz, K. L.; Wells, R. A.; Hu, J.; Yang, T.; Dong, B.; Guo, H.; Woomer, A. H.; Druffel, D. L.; Alabanza, A.; Tománek, D.; Warren, S. C.Control of Surface and Edge Oxidation on Phosphorene. ACS Appl. Mater. Interfaces 2017, 9 (10), 9126–9135.
[77] Favron, A.; Gaufres, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y.; Levesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R.Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat Mater 2015, 14 (8), 826–832.
[78] Miriam, M.-M.; Guillermo, L.-P.; Andres, C.-G.; Cristina, G.-N.; Julio, G.-H.Environmental Effects in Mechanical Properties of Few-Layer Black Phosphorus. 2D Mater. 2016, 3 (3), 31007.
[79] Andrey, A. K.; Yongqing, C.; Kun, Z.; Sergey, V. D.; Yong-Wei, Z.The Role of H 2 O and O 2 Molecules and Phosphorus Vacancies in the Structure Instability of Phosphorene. 2D Mater. 2017, 4 (1), 15010.
[80] Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J.; Ji, W.; Ruoff, R. S.; Sutter, P.Interaction of Black Phosphorus with Oxygen and Water. Chem. Mater. 2016, 28 (22), 8330–8339.
[81] Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-Laheureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R.Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14 (8), 826–832.
[82] Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C.Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014, 14 (12), 6964–6970.
[83] Liu, X.; Chen, K.; Li, X.; Xu, Q.; Weng, J.; Xu, J.Electron Matters: Recent Advances in Passivation and Applications of Black Phosphorus. Adv. Mater. 2021, 2005924, 2005924.
[84] Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J.Recent Advances in Oxidation and Degradation Mechanisms of Ultrathin 2D Materials under Ambient Conditions and Their Passivation Strategies. J. Mater. Chem. A 2019, 7 (9), 4291–4312.
[85] vanDruenen, M.Degradation of Black Phosphorus and Strategies to Enhance Its Ambient Lifetime. Adv. Mater. Interfaces 2020, 7 (22), 2001102.
[86] Wan, D.; Huang, H.; Wang, Z.; Liu, X.; Liao, L.Recent Advances in Long-Term Stable Black Phosphorus Transistors. Nanoscale 2020, 12 (39), 20089–20099.
[87] Wang, F.; Wang, Z.; Yin, L.; Cheng, R.; Wang, J.; Wen, Y.; Shifa, T. A.; Wang, F.; Zhang, Y.; Zhan, X.; He, J.2D Library beyond Graphene and Transition Metal Dichalcogenides: A Focus on Photodetection. Chem. Soc. Rev. 2018, 47 (16), 6296–6341.
[88] Yohannes, A.; Deji, A.; Sampath, G.; Han, W.; Michael, S.; Nirakar, P.; B., C. S.Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30 (29), 1704749.
[89] Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J.-S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T.Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano 2016, 10 (10), 9543–9549.
[90] Galceran, R.; Gaufres, E.; Loiseau, A.; Piquemal-Banci, M.; Godel, F.; Vecchiola, A.; Bezencenet, O.; Martin, M.-B.; Servet, B.; Petroff, F.; Dlubak, B.; Seneor, P.Stabilizing Ultra-Thin Black Phosphorus with in-Situ-Grown 1 Nm-Al2O3 Barrier. Appl. Phys. Lett. 2017, 111 (24), 243101.
[91] Kim, D.-K.; Chae, J.; Hong, S.-B.; Park, H.; Jeong, K.-S.; Park, H.-W.; Kwon, S.-R.; Chung, K.-B.; Cho, M.-H.Interface Engineering for a Stable Chemical Structure of Oxidized-Black Phosphorus via Self-Reduction in AlOx Atomic Layer Deposition. Nanoscale 2018, 10 (48), 22896–22907.
[92] Kim, J.; Baek, S. K.; Kim, K. S.; Chang, Y. J.; Choi, E. J.Long-Term Stability Study of Graphene-Passivated Black Phosphorus under Air Exposure. Curr. Appl. Phys. 2016, 16 (2), 165–169.
[93] Doganov, R. A.; O’Farrell, E. C. T.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B.Transport Properties of Pristine Few-Layer Black Phosphorus by van Der Waals Passivation in an Inert Atmosphere. Nat. Commun. 2015, 6 (1), 6647.
[94] Ra, H.-S.; Lee, A. Y.; Kwak, D.-H.; Jeong, M.-H.; Lee, J.-S.Dual-Gate Black Phosphorus Field-Effect Transistors with Hexagonal Boron Nitride as Dielectric and Passivation Layers. ACS Appl. Mater. Interfaces 2018, 10 (1), 925–932.
[95] Korolkov, V.V.; Timokhin, I. G.; Haubrichs, R.; Smith, E. F.; Yang, L.; Yang, S.; Champness, N. R.; Schröder, M.; Beton, P. H.Supramolecular Networks Stabilise and Functionalise Black Phosphorus. Nat. Commun. 2017, 8 (1), 1385.
[96] -He, D.; Wang, Y.; Huang, Y.; Shi, Y.; Wang, X.; Duan, X.High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. Nano Lett. 2019, 19 (1), 331–337.
[97] Li, X.; Wu, J.; Ye, Y.; Li, S.; Li, T.; Xiong, X.; Xu, X.; Gao, T.; Xie, X.; Wu, Y.Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Appl. Mater. Interfaces 2019, 11 (1), 1587–1594.
[98] Wang, H.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z.; Li, Z.Black Phosphorus Nanosheets Passivation Using a Tripeptide. small 2018, 14 (35), 1801701.
[99] Fan, S.; Qiao, J.; Lai, J.; Hei, H.; Feng, Z.; Zhang, Q.; Zhang, D.; Wu, S.; Hu, X.; Sun, D.; Ji, W.; Liu, J.Wet Chemical Method for Black Phosphorus Thinning and Passivation. ACS Appl. Mater. Interfaces 2019, 11 (9), 9213–9222.
[100] He, L.; Lian, P.; Zhu, Y.; Zhao, J.; Mei, Y.Heteroatom-Doped Black Phosphorus and Its Application: A Review. Chinese J. Chem. 2021, 39 (3), 690–700.
[101] Hu, H.; Shi, Z.; Khan, K.; Cao, R.; Liang, W.; Tareen, A. K.; Zhang, Y.; Huang, W.; Guo, Z.; Luo, X.; Zhang, H.Recent Advances in Doping Engineering of Black Phosphorus. J. Mater. Chem. A 2020, 8 (11), 5421–5441.
[102] Fan, S.; Shen, W.; Liu, J.; Hei, H.; Hu, R.; Hu, C.; Zhang, D.; Hu, X.; Sun, D.; Chen, J.-H.; Ji, W.; Liu, J.Solution-Based Property Tuning of Black Phosphorus. ACS Appl. Mater. Interfaces 2018, 10 (46), 39890–39897.
[103] Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C.Covalent Functionalization and Passivation of Exfoliated Black Phosphorus via Aryl Diazonium Chemistry. Nat. Chem. 2016, 8 (6), 597–602.
[104] Su, C.; Yin, Z.; Yan, Q.-B.; Wang, Z.; Lin, H.; Sun, L.; Xu, W.; Yamada, T.; Ji, X.; Zettsu, N.; Teshima, K.; Warner, J. H.; Dincă, M.; Hu, J.; Dong, M.; Su, G.; Kong, J.; Li, J.Waterproof Molecular Monolayers Stabilize 2D Materials. Proc. Natl. Acad. Sci. 2019, 116 (42), 20844–20849.
[105] Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B.Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Lett. 2016, 16 (4), 2145–2151.
[106] Wang, Z.; Lu, J.; Wang, J.; Li, J.; Du, Z.; Wu, H.; Liao, L.; Chu, P. K.; Yu, X.-F.Air-Stable n-Doped Black Phosphorus Transistor by Thermal Deposition of Metal Adatoms. Nanotechnology 2019, 30 (13), 135201.
[107] Guo, Z.; Chen, S.; Wang, Z.; Yang, Z.; Liu, F.; Xu, Y.; Wang, J.; Yi, Y.; Zhang, H.; Liao, L.; Chu, P. K.; Yu, X.-F.Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Adv. Mater. 2017, 29 (42), 1703811.
[108] Li, M.; Li, W.; Chen, N.; Liang, J.; Liu, Y.; Norouzi Banis, M.; Li, J.; Xiao, Y.; Gao, X.; Hu, Y.; Xiao, Q.; Doyle-Davis, K.; Liu, Y.; Yiu, Y. M.; Li, D.; Liu, S.; Li, R.; Brandys, F.; Divigalpitiya, R.; Sham, T.-K.; Sun, X.Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chem. Mater. 2021, 33 (6), 2029–2036.
[109] Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y.A Phosphorene–Graphene Hybrid Material as a High-Capacity Anode for Sodium-Ion Batteries. Nat Nano 2015, 10 (11), 980–985.
[110] Kim, D.-K.; Hong, S.-B.; Jeong, K.; Lee, C.; Kim, H.; Cho, M.-H.P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. ACS Nano 2019, 13 (2), 1683–1693.
[111] Lv, W.; Yang, B.; Wang, B.; Wan, W.; Ge, Y.; Yang, R.; Hao, C.; Xiang, J.; Zhang, B.; Zeng, Z.; Liu, Z.Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Appl. Mater. Interfaces 2018, 10 (11), 9663–9668.
[112] Han, C.; Hu, Z.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D.; Wang, L.; Huo, F.; Huang, W.; Loh, K. P.; Chen, W.Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Lett. 2017, 17 (7), 4122–4129.
[113] Martin, Z.The Chips Are Down. New Sci. 1999, 164 (2206), 58.
[114] Mack, C. A.Fifty Years of Moore’s Law. IEEE Trans. Semicond. Manuf. 2011, 24 (2), 202–207.
[115] Thompson, S. E.; Parthasarathy, S.Moore’s Law: The Future of Si Microelectronics. Mater. Today 2006, 9 (6), 20–25.
[116] Ryckaert, J.; Na, M. H.; Weckx, P.; Jang, D.; Schuddinck, P.; Chehab, B.; Patli, S.; Sarkar, S.; Zografos, O.; Baert, R.; Verkest, D.Enabling Sub-5nm CMOS Technology Scaling Thinner and Taller!. In 2019 IEEE International Electron Devices Meeting (IEDM); IEEE, 2019; Vol. 2019-Decem, pp 29.4.1-29.4.4.
[117] Thomas, S.Nanosheet FETs at 3 Nm. Nat. Electron. 2018, 1 (12), 613.
[118] Ye, P.; Ernst, T.; Khare, V. M.The Last Silicon Transistor. IEEE Spectr. 2019, 58 (8), 31–35.
[119] Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G.Quantum Engineering of Transistors Based on 2D Materials Heterostructures. Nat. Nanotechnol. 2018, 13 (3), 183–191.
[120] Li, M.-Y.; Su, S.-K.; Wong, H.-S. P.; Li, L.-J.How 2D Semiconductors Could Extend Moore’s Law. Nature 2019, 567 (7747), 169–170.
[121] Liu, Y.; Duan, X.; Shin, H.; Park, S.; Huang, Y.; Duan, X.Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591 (March), 43–53.
[122] Liu, Y.; Duan, X.; Huang, Y.; Duan, X.Two-Dimensional Transistors beyond Graphene and TMDCs. Chem. Soc. Rev. 2018, 47 (16), 6388–6409.
[123] Schram, T.; Smets, Q.; Groven, B.; Heyne, M. H.; Kunnen, E.; Thiam, A.; Devriendt, K.; Delabie, A.; Lin, D.; Lux, M.; Chiappe, D.; Asselberghs, I.; Brus, S.; Huyghebaert, C.; Sayan, S.; Juncker, A.; Caymax, M.; Radu, I. P.WS2 Transistors on 300 Mm Wafers with BEOL Compatibility. Eur. Solid-State Device Res. Conf. 2017, 212–215.
[124] Hu, W.; Sheng, Z.; Hou, X.; Chen, H.; Zhang, Z.; Zhang, D. W.; Zhou, P.Ambipolar 2D Semiconductors and Emerging Device Applications. Small Methods 2021, 5 (1), 2000837.
[125] Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L.Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573 (7775), 507–518.
[126] Shulaker, M. M.; Wu, T. F.; Sabry, M. M.; Wei, H.; Philip Wong, H.-S.; Mitra, S.Monolithic 3D Integration: A Path from Concept to Reality. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015; IEEE Conference Publications: New Jersey, 2015; pp 1197–1202.
[127] Radu, I.; Nguyen, B.-Y.; Gaudin, G.; Mazure, C.3D Monolithic Integration: Stacking Technology and Applications. In 2015 International Conference on IC Design & Technology (ICICDT); IEEE, 2015; pp 1–3.
[128] Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D. W.; Liu, M.; Zhou, P.Two-Dimensional Materials for next-Generation Computing Technologies. Nat. Nanotechnol. 2020, 15 (7), 545–557.
[129] Mitta, S. B.; Choi, M. S.; Nipane, A.; Ali, F.; Kim, C.; Teherani, J. T.; Hone, J.; Yoo, W. J.Electrical Characterization of 2D Materials-Based Field-Effect Transistors. 2D Mater. 2020, 8 (1), 012002.
[130] Nielsen, P. H.; Bashara, N. M.The Reversible Voltage-Induced Initial Resistance in the Negative Resistance Sandwich Structure. IEEE Trans. Electron Devices 1964, 11 (5), 243–244.
[131] Lee, J. S.; Lee, S.; Noh, T. W.Resistive Switching Phenomena: A Review of Statistical Physics Approaches. Appl. Phys. Rev. 2015, 2 (3), 031303.
[132] Villena, M. A.; Roldán, J. B.; Jiménez-Molinos, F.; Miranda, E.; Suñé, J.; Lanza, M.$${ SIM}^2{ RRAM}$$ S I M 2 R R A M : A Physical Model for RRAM Devices Simulation. J. Comput. Electron. 2017, 16 (4), 1095–1120.
[133] Rehman, M. M.; Rehman, H. M. M. U.; Gul, J. Z.; Kim, W. Y.; Karimov, K. S.; Ahmed, N.Decade of 2D-Materials-Based RRAM Devices: A Review. Sci. Technol. Adv. Mater. 2020, 21 (1), 147–186.
[134] Villena, M. A.; Roldán, J. B.; Jiménez-Molinos, F.; Miranda, E.; Suñé, J.; Lanza, M.$${ SIM}^2{ RRAM}$$ S I M 2 R R A M : A Physical Model for RRAM Devices Simulation. J. Comput. Electron. 2017, 16 (4), 1095–1120.
[135] Chiang, C. C.; Ostwal, V.; Wu, P.; Pang, C. S.; Zhang, F.; Chen, Z.; Appenzeller, J.Memory Applications from 2D Materials. Appl. Phys. Rev. 2021, 8 (2).
[136] Ge, R.; Wu, X.; Kim, M.; Shi, J.; Sonde, S.; Tao, L.; Zhang, Y.; Lee, J. C.; Akinwande, D.Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Lett. 2018, 18 (1), 434–441.
[137] Yin, L.; Cheng, R.; Wen, Y.; Liu, C.; He, J.Emerging 2D Memory Devices for In-Memory Computing. Adv. Mater. 2021, 33 (29), 1–27.
[138] Han, S.; Hu, L.; Wang, X.; Zhou, Y.; Zeng, Y.; Ruan, S.; Pan, C.; Peng, Z.Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Adv. Sci. 2017, 4 (8), 1600435.
[139] Zhou, Y.; Liu, D.; Wang, J.; Cheng, Z.; Liu, L.; Yang, N.; Liu, Y.; Xia, T.; Liu, X.; Zhang, X.; Ye, C.; Xu, Z.; Xiong, W.; Chu, P. K.; Yu, X.-F.Black Phosphorus Based Multicolor Light-Modulated Transparent Memristor with Enhanced Resistive Switching Performance. ACS Appl. Mater. Interfaces 2020, 12 (22), 25108–25114.
[140] Rehman, S.; Khan, M. F.; Aftab, S.; Kim, H.; Eom, J.; Kim, D.Thickness-Dependent Resistive Switching in Black Phosphorus CBRAM. J. Mater. Chem. C 2019, 7 (3), 725–732.
[141] Salahuddin, S.; Ni, K.; Datta, S.The Era of Hyper-Scaling in Electronics. Nat. Electron. 2018, 1 (8), 442–450.
[142] Chua, L.Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18 (5), 507–519.
[143] Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S.The Missing Memristor Found. Nature 2008, 453 (7191), 80–83.
[144] Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W.Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 2010, 10 (4), 1297–1301.
[145] Guo, T.; Sun, B.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y. N.; Wu, Y. A.From Memristive Materials to Neural Networks. ACS Appl. Mater. Interfaces 2020, 12 (49), 54243–54265.
[146] Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley and Sons, Inc., 1949. 335 p. $4.00. Sci. Educ. 1950, 34 (5), 336–337.
[147] Kim, S. J.; Kim, S. B.; Jang, H. W.Competing Memristors for Brain-Inspired Computing. iScience 2021, 24 (1), 101889.
[148] Hsieh, Y.-L.; Su, W.-H.; Huang, C.-C.; Su, C.-Y.Solution-Processed Black Phosphorus Nanoflakes for Integrating Nonvolatile Resistive Random Access Memory and the Mechanism Unveiled. Nanotechnology 2019, 30 (44), 445702.
[149] Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z.2D Material Based Synaptic Devices for Neuromorphic Computing. Adv. Funct. Mater. 2021, 31 (4), 2005443.
[150] Huh, W.; Lee, D.; Lee, C.Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Adv. Mater. 2020, 32 (51), 2002092.
[151] Sun, L.; Wang, W.; Yang, H.Recent Progress in Synaptic Devices Based on 2D Materials. Adv. Intell. Syst. 2020, 2 (5), 1900167.
[152] Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H.RRAM-Based Synapse Devices for Neuromorphic Systems. Faraday Discuss. 2019, 213 (0), 421–451.
[153] Zhu, J.; Zhang, T.; Yang, Y.; Huang, R.A Comprehensive Review on Emerging Artificial Neuromorphic Devices. Appl. Phys. Rev. 2020, 7 (1), 11312.
[154] Sangwan, V. K.; Hersam, M. C.Neuromorphic Nanoelectronic Materials. Nat. Nanotechnol. 2020, 15 (7), 517–528.
[155] Li, Y.; Ang, K.-W.Hardware Implementation of Neuromorphic Computing Using Large‐Scale Memristor Crossbar Arrays. Adv. Intell. Syst. 2021, 3 (1), 2000137.
[156] Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C.Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar Arrays. Nanoscale Adv. 2020, 2 (5), 1811–1827.
[157] Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S.-Y.; Colombo, L.; Bonaccorso, F.; Samorì, P.Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019, 31 (10), 1806663.
[158] Xia, Q.; Yang, J. J.Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater. 2019, 18 (4), 309–323.
[159] Gao, T.; Feng, J.; Ma, H.; Zhu, X.The Ovonic Threshold Switching Characteristics in SixTe1−x Based Selector Devices. Appl. Phys. A Mater. Sci. Process. 2018, 124 (11), 734.
[160] Hua, Q.; Wu, H.; Gao, B.; Zhao, M.; Li, Y.; Li, X.; Hou, X.; (Marvin) Chang, M.; Zhou, P.; Qian, H.A Threshold Switching Selector Based on Highly Ordered Ag Nanodots for X‐Point Memory Applications. Adv. Sci. 2019, 6 (10), 1900024.
[161] Karan, K.Interesting Facets of Surface, Interfacial, and Bulk Characteristics of Perfluorinated Ionomer Films. Langmuir 2019, 35 (42), 13489–13520.
[162] Kusoglu, A.; Weber, A. Z.New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117 (3), 987–1104.
[163] Kusoglu, A.; Kushner, D.; Paul, D. K.; Karan, K.; Hickner, M. A.; Weber, A. Z.Impact of Substrate and Processing on Confinement of Nafion Thin Films. Adv. Funct. Mater. 2014, 24 (30), 4763–4774.
[164] Ma, X.; Lu, W.; Chen, B.; Zhong, D.; Huang, L.; Dong, L.; Jin, C.; Zhang, Z.Performance Change of Few Layer Black Phosphorus Transistors in Ambient. AIP Adv. 2015, 5 (10), 107112.
[165] Luo, W.; Zemlyanov, D. Y.; Milligan, C. A.; Du, Y.; Yang, L.; Wu, Y.; Ye, P. D.Surface Chemistry of Black Phosphorus under a Controlled Oxidative Environment. Nanotechnology 2016, 27 (43), 434002.
[166] Yan, Z.; He, X.; She, L.; Sun, J.; Jiang, R.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z.-H.Solvothermal-Assisted Liquid-Phase Exfoliation of Large Size and High Quality Black Phosphorus. J. Mater. 2018, 4 (2), 129–134.
[167] Gao, S.; Yi, X.; Shang, J.; Liu, G.; Li, R.-W.Organic and Hybrid Resistive Switching Materials and Devices. Chem. Soc. Rev. 2019, 48 (6), 1531–1565.
[168] Sun, Y.; Wen, D.; Bai, X.; Lu, J.; Ai, C.Ternary Resistance Switching Memory Behavior Based on Graphene Oxide Embedded in a Polystyrene Polymer Layer. Sci. Rep. 2017, 7 (1), 3938.
[169] Wang, D.; Ji, F.; Chen, X.; Li, Y.; Ding, B.; Zhang, Y.Quantum Conductance in MoS2 Quantum Dots-Based Nonvolatile Resistive Memory Device. Appl. Phys. Lett. 2017, 110 (9), 93501.
[170] Tan, C.; Liu, Z.; Huang, W.; Zhang, H.Non-Volatile Resistive Memory Devices Based on Solution-Processed Ultrathin Two-Dimensional Nanomaterials. Chem. Soc. Rev. 2015, 44 (9), 2615–2628.
[171] Zhang, X.; Xie, H.; Liu, Z.; Tan, C.; Luo, Z.; Li, H.; Lin, J.; Sun, L.; Chen, W.; Xu, Z.; Xie, L.; Huang, W.; Zhang, H.Black Phosphorus Quantum Dots. Angew. Chemie 2015, 127 (12), 3724–3728.
[172] Rani, A.; Kim, D. H.A Mechanistic Study on Graphene-Based Nonvolatile ReRAM Devices. J. Mater. Chem. C 2016, 4 (47), 11007–11031.
[173] Zhu, Y. B.; Zheng, K.; Wu, X.; Ang, L. K.Enhanced Stability of Filament-Type Resistive Switching by Interface Engineering. Sci. Rep. 2017, 7 (1), 43664.
[174] Murgatroyd, P. N.Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J. Phys. D. Appl. Phys. 1970, 3 (2), 151–156.
[175] Mark, P.; Helfrich, W.Space‐Charge‐Limited Currents in Organic Crystals. J. Appl. Phys. 1962, 33 (1), 205–215.
[176] Shi, R.; Wang, X.; Wang, Z.; Cao, L.; Song, M.; Huang, X.; Liu, J.; Huang, W.Fully Solution-Processed Transparent Nonvolatile and Volatile Multifunctional Memory Devices from Conductive Polymer and Graphene Oxide. Adv. Electron. Mater. 2017, 3 (8), 1700135.
[177] Simmons, J. G.Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems. Phys. Rev. 1967, 155 (3), 657–660.
[178] Saini, P.; Singh, M.; Thakur, J.; Patil, R.; Ma, Y. R.; Tandon, R. P.; Singh, S. P.; Mahapatro, A. K.Probing the Mechanism for Bipolar Resistive Switching in Annealed Graphene Oxide Thin Films. ACS Appl. Mater. Interfaces 2018, 10 (7), 6521–6530.
[179] Chen, Y.-C.; Chang, Y.-F.; Wu, X.; Zhou, F.; Guo, M.; Lin, C.-Y.; Hsieh, C.-C.; Fowler, B.; Chang, T.-C.; Lee, J. C.Dynamic Conductance Characteristics in HfOx-Based Resistive Random Access Memory. RSC Adv. 2017, 7 (21), 12984–12989.
[180] Kumar, A.; Das, M.; Garg, V.; Sengar, B. S.; Htay, M. T.; Kumar, S.; Kranti, A.; Mukherjee, S.Forming-Free High-Endurance Al/ZnO/Al Memristor Fabricated by Dual Ion Beam Sputtering. Appl. Phys. Lett. 2017, 110 (25), 253509.
[181] Pradhan, S. K.; Xiao, B.; Mishra, S.; Killam, A.; Pradhan, A. K.Resistive Switching Behavior of Reduced Graphene Oxide Memory Cells for Low Power Nonvolatile Device Application. Sci. Rep. 2016, 6 (1), 26763.
[182] Zhou, K.; Ding, G.; Zhang, C.; Lv, Z.; Luo, S.; Zhou, Y.; Zhou, L.; Chen, X.; Li, H.; Han, S.-T.A Solution Processed Metal–Oxo Cluster for Rewritable Resistive Memory Devices. J. Mater. Chem. C 2019, 7 (4), 843–852.
[183] Jain, R.; Singh, Y.; Cho, S. Y.; Sasikala, S. P.; Koo, S. H.; Narayan, R.; Jung, H. T.; Jung, Y.; Kim, S. O.Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chem. Mater. 2019, 31 (8), 2786–2794.
[184] Luo, F.; Wang, D.; Zhang, J.; Li, X.; Liu, D.; Li, H.; Lu, M.; Xie, X.; Huang, L.; Huang, W.Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Appl. Nano Mater. 2019, 2 (6), 3793–3801.
[185] Gusmão, R.; Sofer, Z.; Pumera, M.Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano 2018, 12 (6), 5666–5673.
[186] Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C.Stable Aqueous Dispersions of Optically and Electronically Active Phosphorene. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (42), 11688–11693.
[187] Hynes, L.; Montiel, G.; Jones, A.; Riel, D.; Abdulaziz, M.; Viva, F.; Bonetta, D.; Vreugdenhil, A.; Trevani, L.Melamine Adsorption on Carbon Materials: Impact of Carbon Texture and Surface Chemistry. Mater. Adv. 2020, 1 (2), 262–270.
[188] Zhao, H.; Xu, B.; Ding, J.; Wang, Z.; Yu, H.Natural Amino Acids: High-Efficiency Intercalants for Graphene Exfoliation. ACS Sustain. Chem. Eng. 2019, 7 (23), 18819–18825.
[189] Xia, J.; Zhu, Y.; He, Z.; Wang, F.; Wu, H.Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Appl. Mater. Interfaces 2019, 11 (18), 17068–17078.
[190] Rodríguez, A. M.; Muñoz-García, A. B.; Crescenzi, O.; Vázquez, E.; Pavone, M.Stability of Melamine-Exfoliated Graphene in Aqueous Media: Quantum-Mechanical Insights at the Nanoscale. Phys. Chem. Chem. Phys. 2016, 18 (32), 22203–22209.
[191] Chen, C. H.; Yang, S. W.; Chuang, M. C.; Woon, W. Y.; Su, C. Y.Towards the Continuous Production of High Crystallinity Graphene via Electrochemical Exfoliation with Molecular in Situ Encapsulation. Nanoscale 2015, 7 (37), 15362–15373.
[192] Lin, S.; Chui, Y.; Li, Y.; Lau, S. P.Liquid-Phase Exfoliation of Black Phosphorus and Its Applications. FlatChem 2017, 2, 15–37.
[193] Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P.Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Adv. Funct. Mater. 2019, 29 (22), 1901126.
[194] Serrano‐Ruiz, M.; Caporali, M.; Ienco, A.; Piazza, V.; Heun, S.; Peruzzini, M.The Role of Water in the Preparation and Stabilization of High‐Quality Phosphorene Flakes. Adv. Mater. Interfaces 2016, 3 (3), 1500441.
[195] Lin, S.; Liu, S.; Yang, Z.; Li, Y.; Ng, T. W.; Xu, Z.; Bao, Q.; Hao, J.; Lee, C.-S.; Surya, C.; Yan, F.; Lau, S. P.Solution-Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Adv. Funct. Mater. 2016, 26 (6), 864–871.
[196] Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q. M.; McEvoy, N.; Blau, W. J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O’Regan, D. D.; Duesberg, G. S.; Nicolosi, V.; Coleman, J. N.Liquid Exfoliation of Solvent-Stabilized Few-Layer Black Phosphorus for Applications beyond Electronics. Nat. Commun. 2015, 6 (1), 8563.
[197] Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A.High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation. Adv. Mater. 2015, 27 (11), 1887–1892.
[198] Woomer, A. H.; Farnsworth, T. W.; Hu, J.; Wells, R. A.; Donley, C. L.; Warren, S. C.Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 2015, 9 (9), 8869–8884.
[199] Li, J.; Huang, P.; Wu, F.Colorimetric Detection of Melamine Based on P-Chlorobenzenesulfonic Acid-Modified AuNPs. J. Nanoparticle Res. 2016, 18 (6), 156.
[200] Hultgren, R.; Gingrich, N. S.; Warren, B. E.The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus. J. Chem. Phys. 1935, 3 (6), 351–355.
[201] Wen, M.; Liu, D.; Kang, Y.; Wang, J.; Huang, H.; Li, J.; Chu, P. K.; Yu, X.-F.Synthesis of High-Quality Black Phosphorus Sponges for All-Solid-State Supercapacitors. Mater. Horizons 2019, 6 (1), 176–181.
[202] Liu, Z.; Sun, Y.; Cao, H.; Xie, D.; Li, W.; Wang, J.; Cheetham, A. K.Unzipping of Black Phosphorus to Form Zigzag-Phosphorene Nanobelts. Nat. Commun. 2020, 11 (1), 3917.
[203] León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E.Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions. ACS Nano 2014, 8 (1), 563–571.
[204] Korolkov, V.V; Baldoni, M.; Watanabe, K.; Taniguchi, T.; Besley, E.; Beton, P. H.Supramolecular Heterostructures Formed by Sequential Epitaxial Deposition of Two-Dimensional Hydrogen-Bonded Arrays. Nat. Chem. 2017, 9 (12), 1191–1197.
[205] Liang, Q.; Shao, B.; Tong, S.; Liu, Z.; Tang, L.; Liu, Y.; Cheng, M.; He, Q.; Wu, T.; Pan, Y.; Huang, J.; Peng, Z.Recent Advances of Melamine Self-Assembled Graphitic Carbon Nitride-Based Materials: Design, Synthesis and Application in Energy and Environment. Chem. Eng. J. 2021, 405, 126951.
[206] Seto, C. T.; Whitesides, G. M.Molecular Self-Assembly through Hydrogen Bonding: Supramolecular Aggregates Based on the Cyanuric Acid-Melamine Lattice. J. Am. Chem. Soc. 1993, 115 (3), 905–916.
[207] Chen, H.; Fraser Stoddart, J.From Molecular to Supramolecular Electronics. Nat. Rev. Mater. 2021, 6 (9), 804–828.
[208] Yao, Z.; Pan, L.; Liu, L.; Zhang, J.; Lin, Q.; Ye, Y.; Zhang, Z.; Xiang, S.; Chen, B.Simultaneous Implementation of Resistive Switching and Rectifying Effects in a Metal-Organic Framework with Switched Hydrogen Bond Pathway. Sci. Adv. 2019, 5 (8), 1–8.
[209] Zhou, L.; Yang, S.; Ding, G.; Yang, J.-Q.; Ren, Y.; Zhang, S.-R.; Mao, J.-Y.; Yang, Y.; Zhou, Y.; Han, S.-T.Tunable Synaptic Behavior Realized in C3N Composite Based Memristor. Nano Energy 2019, 58, 293–303.
[210] Tian, H.; Guo, Q.; Xie, Y.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F.; Wang, H.Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications. Adv. Mater. 2016, 28 (25), 4991–4997.
[211] Ahmed, T.; Tahir, M.; Low, M. X.; Ren, Y.; Tawfik, S. A.; Mayes, E. L. H.; Kuriakose, S.; Nawaz, S.; Spencer, M. J. S.; Chen, H.; Bhaskaran, M.; Sriram, S.; Walia, S.Fully Light‐Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus. Adv. Mater. 2021, 33 (10), 2004207.
[212] Wang, Y.; Wu, F.; Liu, X.; Lin, J.; Chen, J.-Y.; Wu, W.-W.; Wei, J.; Liu, Y.; Liu, Q.; Liao, L.High on/off Ratio Black Phosphorus Based Memristor with Ultra-Thin Phosphorus Oxide Layer. Appl. Phys. Lett. 2019, 115 (19), 193503.
[213] Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J.-Q.; Zhou, Y.; Zeng, Y.-J.; Han, S.-T.; Ruan, S.Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. Adv. Mater. 2018, 30 (30), 1801232.
[214] Gu, M.; Zhang, B.; Liu, B.; Che, Q.; Zhao, Z.; Chen, Y.Solution-Processable Black Phosphorus Nanosheets Covalently Modified with Polyacrylonitrile for Nonvolatile Resistive Random Access Memory. J. Mater. Chem. C 2020, 8 (4), 1231–1238. |