博碩士論文 108323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.144.3.183
姓名 翁健紘(Chien-Hung Weng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以多體動力學與離散元素法雙向耦合模擬探討具阻尼顆粒機構的能量損失機制
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-5以後開放)
摘要(中) 本研究採用採用多體動力學(Multi-body dynamics, MBD)與離散元素法(Discrete element method, DEM)雙向耦合模擬具阻尼顆粒箱體彈簧系統的自由振動行為與減振效果,透過七個基準測試與三個具阻尼顆粒不同中空體積箱體的實驗結果驗證數值模型的正確性,進一步探討顆粒間摩擦係數、牆壁摩擦係數、顆粒間恢復係數、牆壁恢復係數與顆粒剪力模數等參數對箱體減振效益的影響,並分析顆粒體與箱體在振動過程中的能量變化與能量損失的機制。研究結果顯示:(1) 顆粒體總能量為箱體對顆粒體的作功量、摩擦機制的作功量與碰撞機制的作功量之和,箱體損失能量為顆粒體對箱體作功量、線性滑軌摩擦損失能量與系統阻尼損失能量之和,且箱體對顆粒體的作功量等於顆粒體對箱體的作功量,前者為正功,後者為負功;(2) 顆粒體對箱體的作功量是在振動初期顆粒體與箱體接觸而作負功,接著顆粒體與箱體發生多次正面碰撞損失能量;(3) 改變顆粒體參數性質的情況下,箱體的位置與能量變化差異甚小,且顆粒體摩擦損失能量與顆粒體碰撞損失能量變化的趨勢相反;(4) 顆粒體摩擦損失能量隨著顆粒間摩擦係數與顆粒剪力模數的增加而減少,隨著牆壁摩擦係數的增加而增加;(5) 顆粒體碰撞損失能量隨著顆粒間與牆壁恢復係數的增加而減少。
摘要(英) The purpose of this study is to investigate the damping effect of a mass-spring-damper-slider system with a particle damper by coupled Multi-body dynamics (MBD) and Discrete element method (DEM). Seven numerical benchmark tests and free vibration experiments for a mass-spring-damper-slider system with a particle damper were adopted to validate the proposed coupled MBD–DEM model. Subsequently, the validated coupled MBD–DEM model was used to further investigate the effects of the friction coefficient, restitution coefficient, and shear modulus of particles on the suppression of box vibration, and further analyze the energy dissipation of the particles and the box during the vibration process. The main findings are highlighted below: (1) The particles system energy is the sum of the work done by the box, the energy loss from friction, and the energy loss from collision. The energy loss of the box consists of the work done by the particles, the energy loss from the slider, and the energy loss from the damper. The work done by the box to the particles is equal to the work done by the particles to the box. The former is positive work, whereas the latter is negative work; (2) The work done by the particles to the box is induced by the contacts between the particles and the box at the initial stage of vibration, and then by multiple frontal collisions between them; (3) The effects of the particle properties have little influence on the dynamic characteristics of the box. The energy loss from friction has an opposite trend with that from collision; (4) The energy loss from friction decreases with the increase of the inter-bead friction coefficient and shear modulus of particles, but increases with the wall friction coefficient; (5) The energy loss from collision decreases with the increase of the inter-bead and wall restitution coefficients.
關鍵字(中) ★ 阻尼顆粒
★ 多體動力學
★ 離散元素法
★ 雙向耦合
★ 能量損失機制
★ 顆粒參數分析
關鍵字(英) ★ Particle damper
★ Multi-body dynamics
★ Discrete element method
★ Two-way coupling
★ Mechanism of energy dissipation
★ Parametric analysis of particle properties
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 顆粒阻尼器應用相關文獻 1
1-2-2 顆粒阻尼器性質相關文獻 2
1-2-3 MBD-DEM雙向耦合模擬相關文獻 5
1-3 研究動機與目的 7
1-4 研究架構 7
第二章 研究方法 9
2-1 物理模型 9
2-2 數學模型 10
2-3 離散元素法 11
2-3-1 離散元素法之架構 12
2-3-2 三維剛體運動方程式 12
2-3-3 接觸力模型 14
2-3-4 臨界時間步 15
2-4 離散元素電腦模擬 16
2-4-1 模型建模 16
2-4-2 模擬輸入參數 16
2-4-3 顆粒體自然沉積 16
2-4-4 多體動力學與離散元素法雙向耦合模型 17
2-5 Runge-Kutta數值解法 18
2-6 能量計算 18
2-6-1 動能 18
2-6-2 位能 19
2-6-3 摩擦損失能量 20
2-6-4 顆粒間碰撞損失能量 21
2-6-5 箱體系統阻尼損失能量 21
2-6-6 箱體對顆粒體的作功量及顆粒體對箱體的作功量 22
2-6-7 總能量 22
第三章 結果與討論 24
3-1 Runge-Kutta模型基準測試 24
3-1-1 基準測試Ⅰ 24
3-1-2 基準測試Ⅱ 25
3-1-3 基準測試Ⅲ 26
3-1-4 基準測試Ⅳ 26
3-2 能量基準測試 27
3-2-1 基準測試Ⅰ 28
3-2-2 基準測試Ⅱ 29
3-2-3 基準測試Ⅲ 30
3-3 模擬與實驗驗證 31
3-3-1 1/4箱體 31
3-3-2 1/8箱體 33
3-3-3 1/16箱體 35
3-4 顆粒體參數的影響 38
3-4-1 顆粒間摩擦係數 39
3-4-2 顆粒與牆壁間摩擦係數 41
3-4-3 顆粒間恢復係數 43
3-4-4 顆粒與牆壁間恢復係數 45
3-4-5 顆粒剪力模數 46
第四章 結論 49
參考文獻 51
附表 56
附圖 58
參考文獻 [1] Z. Xu, M.Y. Wang, T. Chen, An Experimental Study of Particle Damping for Beams and Plates, Journal of Vibration and Acoustics. 126 (2004) 141–148.
[2] Z. Lu, X. Lu, S.F. Masri, Studies of the performance of particle dampers under dynamic loads, Journal of Sound and Vibration. 329 (2010) 5415–5433.
[3] Z. Lu, X. Lu, W. Lu, S.F. Masri, Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads, Journal of Sound and Vibration. 331 (2012) 2007–2022.
[4] J.J. Moore , A.B. Palazzolo , R. Gadangi , T.A. Nale , S.A. Klusman , G.V. Brown , A.F. Kascak , A forced response analysis and application of impact dampers to rotor dynamic vibration suppression in a cryogenic environment, Journal of Vibration and Acoustics. 117 (1995) 300–310 .
[5] C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers, Journal of Sound and Vibration. 319 (2009) 91–118.
[6] B. Yao, Q. Chen, Investigation on zero-gravity behavior of particle dampers, Journal of Vibration and Control. 21 (2015) 124–133.
[7] N. Ahmad, R. Ranganath, A. Ghosal, Modeling and experimental study of a honeycomb beam filled with damping particles, Journal of Sound and Vibration. 391 (2017) 20–34.
[8] H.V. Panossian, Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique, Journal of Vibration and Acoustics. 114 (1992) 101–105.
[9] W. Liu, G.R. Tomlinson, J.A. Rongong, The dynamic characterisation of disk geometry particle dampers, Journal of Sound and Vibration. 280 (2005) 849–861.
[10] W. Xiao, Y. Huang, H. Jiang, H. Lin, J. Li, Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads, Particuology. 27 (2016) 40–50.
[11] D.K. Wang, C.J. Wu, R.C. Yang, Free Vibration of the Damping Beam Using Co-simulation Method Based on the MFT, International Journal of Acoustics and Vibration. 20 (2015).
[12] X. Lei, C. Wu, Non-obstructive particle damping using principles of gas-solid flows, Journal of Mechanical Science and Technology. 31 (2017) 1057–1065.
[13] X. Huang, W. Xu, W. Yan, J. Wang, Equivalent model and parameter analysis of non-packed particle damper, Journal of Sound and Vibration. 491 (2021) 115775.
[14] W.M. Yan, B.S. Wang, H.X. He, Research of mechanical model of particle damper with friction effect and its experimental verification, Journal of Sound and Vibration. 460 (2019) 114898.
[15] B. Fu, H. Jiang, T. Wu, Experimental study of seismic response reduction effects of particle damper using substructure shake table testing method, Structural Control and Health Monitoring. 26 (2019) e2295.
[16] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique. 29 (1979) 47–65.
[17] T. Chen, K. Mao, X. Huang, M.Y. Wang, Dissipation mechanisms of nonobstructive particle damping using discrete element method, Smart Structures and Materials. 4331 (2001) 294-301.
[18] K. Mao, M.Y. Wang, Z. Xu, T. Chen, Simulation and Characterization of Particle Damping in Transient Vibrations, Journal of Vibration and Acoustics. 126 (2004) 202–211.
[19] M.R. Duncan, C.R. Wassgren, C.M. Krousgrill, The damping performance of a single particle impact damper, Journal of Sound and Vibration. 286 (2005) 123–144.
[20] C. Machado, M. Guessasma, E. Bellenger, An improved 2D modeling of bearing based on DEM for predicting mechanical stresses in dynamic, Mechanism and Machine Theory. 113 (2017) 53–66.
[21] K. Mao, M.Y. Wang, Z. Xu, T. Chen, DEM simulation of particle damping, Powder Technology. 142 (2004) 154–165.
[22] Y. Duan, Q. Chen, Simulation and experimental investigation on dissipative properties of particle dampers, Journal of Vibration and Control. 17 (2011) 777–788.
[23] X.M. Bai, B. Shah, L.M. Keer, Q.J. Wang, R.Q. Snurr, Particle dynamics simulations of a piston-based particle damper, Powder Technology. 189 (2009) 115–125.
[24] M. Sánchez, C. Manuel Carlevaro, Nonlinear dynamic analysis of an optimal particle damper, Journal of Sound and Vibration. 332 (2013) 2070–2080.
[25] L. Hu, Q. Huang, Z. Liu, A non-obstructive particle damping model of DEM, International Journal of Mechanics and Materials in Design. 4 (2008) 45–51.
[26] A.A. Shabana, Dynamics of multibody systems, 3rd ed, Cambridge University Press, Cambridge ; New York, 2005.
[27] W. Schiehlen, Computational dynamics: theory and applications of multibody systems, European Journal of Mechanics - A/Solids. 25 (2006) 566–594.
[28] Kinematics and Dynamics of Multibody Systems with Imperfect Joints, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[29] Q. Tian, P. Flores, H.M. Lankarani, A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints, Mechanism and Machine Theory. 122 (2018) 1–57.
[30] L. Xu, Y. Li, An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems, Nonlinear Dynamics. 70 (2012) 2145–2161.
[31] M. Langerholc, M. Česnik, J. Slavič, M. Boltežar, Experimental validation of a complex, large-scale, rigid-body mechanism, Engineering Structures. 36 (2012) 220–227.
[32] C.J. Coetzee, D.N.J. Els, G.F. Dymond, Discrete element parameter calibration and the modelling of dragline bucket filling, Journal of Terramechanics. 47 (2010) 33–44.
[33] G.K.P. Barrios, L.M. Tavares, A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling, International Journal of Mineral Processing. 156 (2016) 32–42.
[34] Z. Lu, X. Lu, H. Jiang, S. F. Masri, Discrete element method simulation and experimental validation of particle damper system, Engineering Computations. 31 (2014) 810–823.
[35] S. Lommen, G. Lodewijks, D.L. Schott, Co-simulation framework of discrete element method and multibody dynamics models, EC. 35 (2018) 1481–1499.
[36] Y.C. Chung, Y.R. Wu, Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method, Nonlinear Dynamics. 98 (2019) 129–149.
[37] Y.R. Wu, Y.C. Chung, I.C. Wang, Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles, Mechanism and Machine Theory. 159 (2021) 104257.
[38] 陳伯宣, 以具阻尼顆粒機構實驗驗證多體動力學與離散元素法雙向耦合模擬技術, 國立中央大學碩士論文, 2020.
[39] F. Marques, P. Flores, J.C. Pimenta Claro, H.M. Lankarani, A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems, Nonlinear Dynamics. 86 (2016) 1407–1443.
[40] E. Pennestrì, V. Rossi, P. Salvini, P.P. Valentini, Review and comparison of dry friction force models, Nonlinear Dynamics. 83 (2016) 1785–1801.
[41] F. Marques, P. Flores, J.C.P. Claro, H.M. Lankarani, Modeling and analysis of friction including rolling effects in multibody dynamics: a review, Multibody System Dynamics. 45 (2019) 223–244.
[42] C. Dou, J. Fan, C. Li, J. Cao, M. Gao, On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints, Mechanism and Machine Theory. 147 (2020) 103750.
[43] L. Gagnon, M. Morandini, G.L. Ghiringhelli, A review of friction damping modeling and testing, Archive of Applied Mechanics. 90 (2020) 107–126.
[44] D.J. Cheng, W.S. Yang, J.H. Park, T.J. Park, S.J. Kim, G.H. Kim, C.H. Park, Friction experiment of linear motion roller guide THK SRG25, International Journal of Precision Engineering and Manufacturing. 15 (2014) 545–551.
[45] S.S. Rao, Mechanical Vibrations in SI Units, 6th Global Edition, Pearson Education, 2018.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2021-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明