博碩士論文 108323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.144.3.183
姓名 粘少銘(Shao-Ming Nien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氮化鋁/氮化鋁粗糙面鍵合:以氧電漿強化毛細作用
(Aluminum nitride/aluminum nitride rough surface wafer bonding: use of oxygen plasma to enhance capillary action)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鋁是一種具有高絕緣、高熱傳的材料,但由於氮化鋁同時具有高的化學惰性,再加上現有的拋光技術最好只能將多晶氮化鋁基板表面拋至RMS=16nm,因此要實現多晶氮化鋁/氮化鋁晶圓鍵合是非常困難的。本研究利用氧氣電漿活化粗糙的氮化鋁基板表面,以增加其表面親水功能基密度,使表面毛細管作用力提升。用AFM量測電漿活化前與電漿活化後的表面粗糙度差異,發現電漿活化三分鐘後表面被電漿清潔因此粗糙度會下降,但電漿活化五分鐘後表面被電漿破壞,因此粗糙度上升。用接觸角量測儀量測電漿活化前與活化後潤濕性的差異,發現電漿活化後接觸角由85度下降到16度,證實了電漿活化後,表面親水功能基密度會提升。之後在兩片氮化鋁間滴入一滴去離子水後進行晶圓鍵合,將鍵合好的試片加壓並放在室溫下一天後,再放入烘箱中進行退火以提升鍵合強度。由SEM的結果得知,鍵合後的氮化鋁/氮化鋁鍵合對介面無微米等級的孔洞產生,由TEM結果發現在鍵合處有30nm厚的過渡層,利用EDS分析及XPS分析得知此過渡層的成分為氧化鋁。
摘要(英) Aluminum nitride is a material with high insulation and high heat transfer. However, due to the high chemical inertness of aluminum nitride, in addition to the existing polishing technology, the surface of aluminum nitride substrate can only be polished to RMS=16nm at best, so it is very difficult to realize aluminum nitride/aluminum nitride wafer bonding. In this study, the rough aluminum nitride substrate surface was activated by oxygen plasma to increase the density of hydrophilic functional groups on the surface of aluminum nitride and enhance the surface capillary force. The difference of surface roughness before and after plasma activation was measured by AFM. It was found that after three minutes of plasma activation, the surface was cleaned by plasma, so the roughness decreased. However, after five minutes of plasma activation, the surface was damaged by plasma, so the roughness increased. The difference in contact angle between before and after plasma activation was measured by Contact Angle Meter. The difference in wetting properties before and after plasma activation was measured by Contact Angle Meter. It was found that the contact angle decreased from 85 degrees to 16 degrees after plasma activation. It is confirmed that the density of hydrophilic functional groups on the surface will increase after plasma activation. After oxygen plasma activation, a drop of DI water was added between the two aluminum nitride pieces and then wafer bonding was performed. Finally, the bonded pairs were pressed and placed at room temperature for one day, and then annealed in an oven to improve the bonding strength. The SEM results showed that the AlN/AlN bonding pair had no micron-level holes at the bonding interface. From the TEM results, a 30 nm thick transition layers was found at the bonding interface. The composition of the transition layers was found to be aluminum oxide by EDS analysis and XPS analysis.
關鍵字(中) ★ 氮化鋁
★ 晶圓鍵合
★ 氧氣電漿活化
★ 親水功能基
關鍵字(英) ★ Aluminum nitride
★ Wafer bonding
★ Oxygen plasma activation
★ Hydrophilic functional group
論文目次 論文授權書 i
論文延後公開申請書 ii
論文指導教授推薦書 iii
論文口試委員審定書 iv
摘要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 文獻回顧 3
2-1半導體晶圓鍵合技術簡介 3
2-2 兩晶圓之介面相互作用力 3
2-2-1凡得瓦作用力 4
2-2-2靜電力 5
2-2-3毛細管作用力 6
2-3 晶圓鍵合種類 7
2-3-1直接鍵合法 7
2-3-2低溫鍵合法 9
2-3-3中間介質層鍵合法 12
2-3-4陽極鍵合法 13
2-4 影響晶圓鍵合結果的因素 14
2-5氮化鋁晶圓鍵合方法 15
2-5-1以氧化鋁作為介質層鍵合氮化鋁與銅 16
2-5-2氬電漿活化表面直接鍵合兩片氧化鋁 17
2-5-3以鈦、金作為介質層鍵合氮化鋁與矽 18
2-5-4利用介質層擴散鍵合氮化鋁與鋁 19
2-6分析儀器簡介 20
2-6-1原子力顯微鏡 20
2-6-2超高解析冷場發射掃描式電子顯微鏡 21
2-6-3高解析掃描穿透式電子顯微鏡 22
2-6-4 X射線光電子能譜儀 23
第三章 鍵合實驗方法及步驟 24
3-1實驗架構 24
3-2試片準備 24
3-3試片清洗 25
3-4電漿活化及介面滴水 26
3-5施加壓力及鍵合後退火處理 28
第四章 結果與討論 30
4-1 表面AFM量測 30
4-2 電漿活化前後接觸角比較 33
4-3 鍵合結果 34
4-4 電漿活化前後表面粗糙度比較 36
4-5 SEM結果 37
4-6 TEM結果 39
4-7 EDS 分析結果 41
4-8 XPS 分析結果 42
4-8-1 氮化鋁中鋁之XPS 分析結果 43
4-8-2 氮化鋁中氮、氧之XPS 分析結果 45
4-9 鍵合機制 48
第五章 結論與未來展望 50
5-1 結論 50
5-2 未來展望 51
參考文獻 52
參考文獻 ﹝1﹞ Khor, K.A.; Yu, L.G.; Murakoshi, Y. Spark plasma sintering of Sm2O3‑doped aluminum nitride. Journal of the European Ceramic Society. 2004,25,1057-1065.
﹝2﹞ J.Jarrige; T. Joyeux; J.P. Lecompte; J.C. Labbe, Comparison between two processes using oxygen in the Cu/AlN bonding, Journal of the European Ceramic Society, 2006, 855-860.
﹝3﹞ S. Bao, K. H. Lee, G. Y. Chong, E. A. Fitzgerald, and C. S. Tan, “AlN-AlN Layer Bonding and Its Thermal Characteristics”, Journal of Solid State Science and Technology, 2015, 200.
﹝4﹞ 林辰峰,AlN,Al2O3,Al應用於LED散熱基板之壽命推估研究,國立中央大學,碩士論文,民國103年。
﹝5﹞ Q.-Y. Tong;U. Gosele. Semiconductor Wafer Bonding. 1999.
﹝6﹞ Yanru Jia; Renli Fua; Jinling Lva; Xinyao Zhanga; Xudong Chena; Guojun Lia; Xuhai Liub. Enhanced bonding strength of Al2O3/AlN ceramics joined via glass frit with gradient thermal expansion coefficient. Ceramics International. 2020, 12806-12811.
﹝7﹞ Roger G. Horn,“Surface Forces and Their Action in Ceramic Materials”, J. Am. Cerum. SOC, 1990, 1117.
﹝8﹞ Kai-Tak Wan, Douglas T. Smith, Brain R. Lawn, “Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres”, American Ceramic Society, 1992, 667.
﹝9﹞ L. R. Fisher, J. Israelachvili, “Direct measurement of the effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces”, Colloids and Surfaces, 1981, 303.
﹝10﹞ T.A. Michalske, B.C. Bunker, “Slow fracture model based on strained silicate structures” J. Appl. Phys. Lett., 1984, 2686.
﹝11﹞ Eliezer M.Rabinovich, Denise M. Krol, Nonna A. Kopylov, Patrick K. Gallagher, “Retention of Fluorine in Silica Gels and Glass”, J. Am. Ceram. Soc., 1989, 1229.
﹝12﹞ L.-J. Huang, Y.-L. Chao, and T. H. Lee, “Fundamental issues in wafer bonding”, American Vacuum Society, 1999, 1145-1152.
﹝13﹞ Q.-Y. Tong, et al., “Low Vacuum Bonding”, Electrochemical and Solid-State Letters, 1998, 52-53.
﹝14﹞ T. Suni, K. Henttinen, I. Suni, and J. Makinen, “Effects of Plasma Activation on Hydrophilic Bonding of Siand SiO2”, Journal of The Electrochemical Society, 2002, 348-351.
﹝15﹞ Frank Shi, Hao Chen and Scott MacLaren, “Wafer-bonded semiconductors using In’Sn and Cu’Ti metallic interlayers”, American Institute of Physics, 2004, 3504-3506.
﹝16﹞ H.C. Lin, K.L. Chang, G.W. Pickrell, K.C. Hsieh, and K.Y. Cheng, “Low temperature wafer bonding by spin on glass”, American Vacuum Society, 2002, 752-754.
﹝17﹞ F. Niklaus, H. Andersson, P. Enoksson, G. Stemme, “Low temperature full wafer adhesive bonding of structured wafers”, Sensors and Actuators A-Physical, 2001, 235-241.
﹝18﹞ J. Jarrige, T. Joyeux, J.P. Lecompte, J.C. Labbe, “Comparison between two processes using oxygen in the Cu/AlN bonding” , Journal of the European Ceramic Society, 2007, 855.
﹝19﹞ Yoshirou KUROMITSU, Yoshiyuki NAGATOMO, Kazuhiro AKIYAMA, Naoya SHIBATA and Yuichi IKUHARA, “Direct-bonded aluminum on aluminum nitride substrates by transient liquid phase bonding”, The Ceramic Society of Japan, 2017, 165-167.
﹝20﹞ Takashi Matsumae, Yuichi Kurashima, Eiji Higurashi, Kazunori Nishizono, Tsutomu Amano, Hideki Takagi, “Room temperature bonding of aluminum nitride ceramic and semiconductor substrate”, Ceramics International, 2020, 25956.
﹝21﹞ J.Haisma, G.A.C.M. Spiering, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook”, Materials Science and Engineering, 2002, 1.
﹝22﹞ Qiushi Kang, Chenxi Wang, Fanfan Niu, Shicheng Zhou, Jikai Xu, Yanhong Tian, “Single-crystalline SiC integrated onto Si-based substrates via plasma-activated direct bonding”, Ceramics International, 2020.
﹝23﹞ Ling Sang, Qin Sheng Zhu, Shao Yan Yang, Gui Peng Liu, Hui Jie Li, Hong Yuan Wei, Chun Mei Jiao,Shu Man Liu, Zhan Guo Wang, Xiao Wei Zhou, Wei Mao, Yue Hao and Bo Shen, “Band offsets of non-polar A-plane GaN/AlN andAlN/GaN heterostructures measured by X-rayphotoemission spectroscopy”, Nanoscale Research Letters, 2014.
﹝24﹞ Z. Liu, D. Li, S. Wei, W. Wang, F. Tian, K. Bao, D. Duan, H. Yu, B. Liu, T. Cui, Bonding properties of aluminum nitride at high pressure, Inorganic chemistry 56(13) (2017) 7494-7500.
﹝25﹞ Y. Chen, X. Hou, Z. Fang, E. Wang, J. Chen, G. Bei, Adsorption and Reaction of Water on the AlN (0001) Surface from First Principles, The Journal of Physical Chemistry C 123(9) (2019) 5460-5468.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2022-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明