參考文獻 |
[1] Russell, C. S., Mostafavi, A., Quint, J. P., Panayi, A. C., Baldino, K., Williams, T. J., Daubendiek, J. G., Sánchez, V. H., Bonick, Z., Trujillo-Miranda, M., Shin, S. R., Pourquie, O., Salehi, S., Sinha, I., & Tamayol, A. (2020). In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries. ACS Appl. Bio Mater, 3(3), 1568-1579.
[2] 林哲宇、游佳欣、林泓瑞、賴柏顥、王潔 (2019)。積層製造的生醫應用。科學發展月刊,(562),24-31。
[3] Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D., & Zenobi-Wong, M. (2015). A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater, 11, 162-172.
[4] Lin, H. H., Hsieh, F. Y., Tseng, C. S., & Hsu, S. H. (2016). Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting. Materials Chemistry B, 4(41), 6694-6705.
[5] Tabriz, A. G., Hermida, M. A., Leslie, N. R., & Shu, W. (2015). Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication, 7(4), 045012.
[6] Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J. H., Fischer, K., Park, J. K., & Yoo, S. S. (2009). On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnology and Bioengineering, 105(6), 1178-1186.
[7] Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. US4575330A.
[8] Han, X. X., Courseaus, J., Khamassi, J., Nottrodt, N., Engelhardt, S., Jacobsen, F., Bierwisch, C., Meyer, W., Walter, T., Weisser, J., Jaeger, R., Bibb, R., & Harris, R. (2018). Optimized vascular network by stereolithography for tissue engineered skin. Int J Bioprint, 4(2), 134.
[9] Bertsch, A., Zissi, S., Jezequel, J. Y., Corbel, S., & Andre, J. C. (1997). Micro stereo photolithography using a liquid crystal display as dynamic mask-generator. Microsystem Technologies, 3(2), 42-47.
[10] Hornbeck, L. J. (1997). Digital light processing for high-brightness high-resolution applications. In Projection Displays III, 3013, 27-40.
[11] Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K., & Chen, S. (2016). 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 40, 103-112.
[12] Kim, S. H., Yeon, Y. K., Lee, J. M., Chao, J. R., Lee, Y. J., Seo, Y. B., Sultan, M. T., Lee, O. J., Lee, J. S., Yoon, S., Hong, I., Khang, G., Lee, S. J., Yoo, J. J., & Park, C. H. (2018). Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 9(1).
[13] Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7(7-8), 32-39.
[14] Xu, Q., Lv, Y., Dong, C., Sreeprased, T. S., Tian, A., Zhang, H., Tang, Y., Yu, Z. & Li, N. (2015). Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale, 7(25), 10883-10895.
[15] Kollamaram, G., Croker, D. M., Walker, G. M., Goyanes, A., Basit, A. W., & Gaisford, S. (2018). Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International Journal of Pharmaceutics, 545(1-2), 144-152.
[16] Negro, A., Cherbuin, T., & Lutolf, M. P. (2018). 3D inkjet printing of complex, cell-laden hydrogel structures. Scientific Reports, 8(1), 1-9.
[17] Skylar-Scott, M. A., Gunasekaran, S., & Lewis, J. A. (2016). Laser-assisted direct ink writing of planar and 3D metal architectures. PNAS, 113(22), 6137-6142.
[18] Barry III, R. A., Shepherd, R. F., Hanson, J. N., Nuzzo, R. G., Wiltzius, P., & Lewis, J. A. (2009). Direct‐write assembly of 3D hydrogel scaffolds for guided cell growth. Advanced Materials, 21(23), 2407-2410.
[19] Hon, K. K. B., Li, L., & Hutchings, I. M. (2008). Direct writing technology—Advances and developments. CIRP Annals, 57(2), 601-620.
[20] O’Connell, C. D., Konate, S., Onofrillo, C., Kapsa, R., Baker, C., Duchi, S., Eekel, T., Yue, Z., Beirne, S., Barnsley, G., Bella, C. D., Choong, P. F., & Wallace, G. G. (2020). Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photocrosslinking during extrusion. Bioprinting, 19(3), 1-12.
[21] Duchi, S., Onofrillo, C., O’Connell, C. D., Blanchard, R., Augustine, C., Quigley , A. F., Kapsa, R. M. I., Pivonka, P., Wallace, G., Bella, C. D., & Choong, P. F. M. (2017). Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Scientific Reports, 7(1), 5837.
[22] Zhu, J., Zhang, Q., Yang, T., Liu, Y., & Liu, R. (2020). 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nature Communications, 11(1), 3462.
[23] Li, Z., Chen, H., Wang, C., Chen, L., Liu, J., & Liu, R. (2018). Efficient photopolymerization of thick pigmented systems using upconversion nanoparticles-assisted photochemistry. Polymer Chemistry, 56(9), 994-1002.
[24] Wang, Z., Jin, X., Tian, Z., Menard, F., Holzman, J. F., & Kim, K. (2018). A novel, well-resolved direct laser bioprinting system for rapid cell encapsulation and microwell fabrication. Advanced Healthcare Mater, 7(9), 1-11.
[25] Mandrycky, C., Wang, Z., Kim, K., & Kim, D. H. (2016). 3D bioprinting for engineering complex tissues. Biotechnology Advances, 34(4), 422-434.
[26] Gao, G., Yonezawa, T., Hubbell, K., Dai, G., & Cui, X. (2015). Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnology Journal, 10(10), 1568-1577.
[27] Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Rémy, M., Bordenave, L., Amédée, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250-7256.
[28] Catros, S, Fricain, J. C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amédée, J., & Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3(2), 025001.
[29] Liu, W., Zhang, Y. S., Heinrich, M. A., Ferrari, F. D., Jang, H. L., Bakht, S. M., Alvarez, M. M., Yang, J., Li, Y. C., Santiago, G. T., Miri, A. K., Zhu, K., Khoshakhlagh, P., Prakash, G., Cheng, H., Guan, X. F., Zhong, Z., Ju, J., Zhu, G. H., Jin, X., Shin, S. R., Dokmeci, M. R., & Khademhosseini, A. (2017). Rapid continuous multimaterial extrusion bioprinting. Advanced Materials, 29(3), 1604630.
[30] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[31] Sun, A. X., Lin, H., Beck, A. M., Kilroy, E. J., & TuanProjection, R. S. (2015). Stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front Bioeng Biotechnol, 3, 115.
[32] Warner, J., Soman, P., Zhu, W., Tom, M., & Chen, S. (2016). Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomaterials Science and Engineering, 2(10), 1763-1770.
[33] Huang, X., Zhang, Y., Shi, M., Zhang, L. P., Zhang, Y., & Zhao, Y. (2021). A highly biocompatible bio-ink for 3D hydrogel scaffolds fabrication in the presence of living cells by two-photon polymerization. European Polymer Journal, 153(2021), 110505.
[34] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩 (2018)。3D列印:積層製造技術與應用。新北市:全華圖書。
[35] Du, Y., Guo, J. L., Wang, J., Mikos, A. G., & Zhang, S. (2019). Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials, 218(119334).
[36] Li, B., Moriarty, T. F., Webster, T., & Xing, M. (2020). Racing for the surface: Antimicrobial and Interface Tissue Engineering. New York, America: Springer, Cham.
[37] Pan, E. Y., Pu, N. W., Tong, Y. P., & Yau, H. F. (2005). Application of two-photon-absorption photopolymerization to micro-device fabrication. Journal of C.C.I.T., 34(1), 57-74.
[38] Boyd, R. W. (1992). Nonlinear Optics. San Diego: Academic press.
[39] 沈芳茹 (2020)。基於光感三維生物列印之路徑導引式噴頭開發,國立中央大學,碩士論文。
[40] Knowlton, S., Yenilmez, B., Anand, S., & Tasoglu, S. (2017). Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5, 10-18.
[41] D O’Connell, C., Di Bella, C., Thompson, F., Augustine, C., Beirne, S., Cornock, R., Richards, C, J., Chung, J., Gambhir, S., Yue, Z., Bourke, J., Zhang, B., Taylor, A., Quigley, A., Kapsa, R., Choong, P., & Wallace, G. G. (2016). Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 8(1), 015019.
[42] Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., Van Blitterswijk, C. A., Schacht, E., Alblas, J., & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689-1696.
[43] Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., Scott, D. W., Fischer, J. P., & Mikos, A. G. (2016). Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design. ACS Biomaterials Science & Engineering, 2(10), 1771-1780.
[44] Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6(2), 024105.
[45] Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M. R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Advanced Materials, 28(4), 677-684.
[46] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[47] Zheng, L., Kurselis, K., El-Tamer, A., Hinze, U., Reinhardt, C., Overmeyer, L., & Chichkov, B. (2019). Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerization. Nanoscale Research Letters, 14(1), 134.
[48] Kim, J. D., & Lee, Y. G. (2016). Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization. Journal of Micromechanics and Microengineering, 26(7), 075012.
[49] Hafez, M., Sidler, T., & Salathe, R. P. (2003). Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner. Optical Engineering, 42(4), 1048-1057.
[50] Ha, C. W., Prabhakaran, P., & Son, Y. (2019). 3D-printed polymer/metal hybrid microstructures with ultraprecision for 3D microcoils. 3D Printing and Additive Manufacturing, 6(3), 165.
[51] Rekštytė, S., Žukauskas, A., Purlys, V., Gordienko, Y., & Malinauskas, M. (2013). Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Applied Surface Science, 270, 382-387.
[52] Zhou, X., Hou, Y., & Lin, J. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3), 030701.
[53] 洪承暉 (2018)。使用微型閥並具備自動平台校正功能之三維生物列印機開發,國立中央大學,碩士論文。
[54] Park, S. H., Yang, D. Y., & Lee, K. S. (2009). Two-photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices. Laser & Photonics Reviews, 3(1-2), 1-11. |