博碩士論文 108323092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.144.3.183
姓名 楊凱甯(Kai-Ning Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程用雷射掃描之路徑導引式噴頭研發
(Development of Path Guiding Nozzle with Laser Scanning Manner for Tissue Engineering Applications)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 光交聯是三維生物列印用來強化生物墨水結構的方法之一,但生物墨水內所添加光啟始劑產生的離子以及紫外光重覆照射,恐怕會降低細胞活性。
本研究發展路徑導引式噴頭,並結合近紅外光飛秒雷射,將光源使用顯微物鏡聚焦成一點,並於焦點前方利用噴頭將生物墨水隨著預定位置擠出,隨後立即使其產生光焦聯。當飛秒雷射照射至光敏材料上能產生雙光子吸收效應,而未被光束照射的區域不會聚合,只有焦點附近的光敏材料會固化,故能更準確地達到局部固化的效果。但因為雷射焦點很小,故需要加裝振鏡,讓雷射來回掃描,以列印出較大尺寸的生物支架。
本研究設計驗證雷射準直與振鏡掃描之雷射焦點範圍,並透過疊圖和橢圓擬合來辨識雷射焦點中心與振鏡掃描的實際範圍。結果證明雷射準直之雷射焦點中心X座標偏差值在三維生物列印機列印平台升降時為55.81 μm;運動平台Z軸升降時為30.03 μm;振鏡掃描時為34.67 μm。透過調整類比電壓輸出由-0.6 V至0.6 V所量測之振鏡掃描實際範圍為1.369 mm,經由以上結果可確保雷射能達到設定之目標。
摘要(英) Photocrosslinking is one of the methods used by 3D bioprinting to strengthen the structure of bio-ink, However, repeated irradiation of the ions generated by the photoinitiator added in the bio-ink and UV light may reduce cell activity.
In this study, the Path Guiding Nozzle will be developed and combined with the near-infrared femtosecond laser. It can focus the light source into a point using a microscopic objective lens, and push the bio-ink in the predetermined position by the nozzle. Then the material can be crosslinked rapidly. Two-photon polymerization happened when femtosecond laser focuses on the photopolymer material. In contrast to the unexposed place hasn’t been cured. Photopolymer material where be cured only around the focus so can achieve the effect of partial curing more accuracy. Nevertheless, the laser focus is very small. It is needed to install the galvanometer to let the laser scan and print the larger size bio-scaffold.
This research designs and confirms the laser collimation and laser focus range of the galvanometer scanning. Using overlay and ellipse fitting to identify the center of the laser focus and the actual range of the galvanometer scan. The result proves that when the printing platform of 3D bioprinter is moved the X coordinate standard deviation of the laser focus center of the laser collimation is 55.81 μm, the Z-axis of the motion platform moved is 30.03 μm, and the galvanometer scanning is 34.67 μm. The actual scanning range of the galvanometer measured by adjusting the analog voltage output from -0.6 V to 0.6 V is 1.369 mm. The above results ensure that the laser can reach the set target.
關鍵字(中) ★ 組織工程支架
★ 三維生物列印機
★ 光交聯
★ 導引式噴頭
★ 雷射掃描
關鍵字(英) ★ Scaffold
★ 3D bioprinter
★ Photocrosslinking
★ Guided nozzle
★ Laser scanning
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 11
1-4 論文架構 11
第二章 研究與理論說明 13
2-1 組織工程簡介 13
2-2 光子吸收現象與光致聚合反應 15
2-3 光感技術簡介 19
2-4 UV-LED模組之三維生物列印系統簡介 28
第三章 系統架構與實驗方法 32
3-1 FS-LASER模組之光路配置與設計 33
3-2 路徑導引式噴頭模組之機構設計改良 44
3-3 人機介面 49
3-4 驗證飛秒雷射於三維生物列印機之方法與流程 51
第四章 實驗結果與討論 54
4-1 路徑導引式噴頭改良後之性能分析 54
4-2 飛秒雷射於三維生物列印機之準直度與功率測試 56
4-3 飛秒雷射於三維生物列印機透過振鏡之掃描範圍驗證 62
第五章 結論與未來展望 67
5-1 結論 67
5-2 未來展望 67
第六章 參考文獻 69
參考文獻 [1] Russell, C. S., Mostafavi, A., Quint, J. P., Panayi, A. C., Baldino, K., Williams, T. J., Daubendiek, J. G., Sánchez, V. H., Bonick, Z., Trujillo-Miranda, M., Shin, S. R., Pourquie, O., Salehi, S., Sinha, I., & Tamayol, A. (2020). In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries. ACS Appl. Bio Mater, 3(3), 1568-1579.
[2] 林哲宇、游佳欣、林泓瑞、賴柏顥、王潔 (2019)。積層製造的生醫應用。科學發展月刊,(562),24-31。
[3] Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D., & Zenobi-Wong, M. (2015). A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater, 11, 162-172.
[4] Lin, H. H., Hsieh, F. Y., Tseng, C. S., & Hsu, S. H. (2016). Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting. Materials Chemistry B, 4(41), 6694-6705.
[5] Tabriz, A. G., Hermida, M. A., Leslie, N. R., & Shu, W. (2015). Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication, 7(4), 045012.
[6] Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J. H., Fischer, K., Park, J. K., & Yoo, S. S. (2009). On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnology and Bioengineering, 105(6), 1178-1186.
[7] Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. US4575330A.
[8] Han, X. X., Courseaus, J., Khamassi, J., Nottrodt, N., Engelhardt, S., Jacobsen, F., Bierwisch, C., Meyer, W., Walter, T., Weisser, J., Jaeger, R., Bibb, R., & Harris, R. (2018). Optimized vascular network by stereolithography for tissue engineered skin. Int J Bioprint, 4(2), 134.
[9] Bertsch, A., Zissi, S., Jezequel, J. Y., Corbel, S., & Andre, J. C. (1997). Micro stereo photolithography using a liquid crystal display as dynamic mask-generator. Microsystem Technologies, 3(2), 42-47.
[10] Hornbeck, L. J. (1997). Digital light processing for high-brightness high-resolution applications. In Projection Displays III, 3013, 27-40.
[11] Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K., & Chen, S. (2016). 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 40, 103-112.
[12] Kim, S. H., Yeon, Y. K., Lee, J. M., Chao, J. R., Lee, Y. J., Seo, Y. B., Sultan, M. T., Lee, O. J., Lee, J. S., Yoon, S., Hong, I., Khang, G., Lee, S. J., Yoo, J. J., & Park, C. H. (2018). Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 9(1).
[13] Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7(7-8), 32-39.
[14] Xu, Q., Lv, Y., Dong, C., Sreeprased, T. S., Tian, A., Zhang, H., Tang, Y., Yu, Z. & Li, N. (2015). Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale, 7(25), 10883-10895.
[15] Kollamaram, G., Croker, D. M., Walker, G. M., Goyanes, A., Basit, A. W., & Gaisford, S. (2018). Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International Journal of Pharmaceutics, 545(1-2), 144-152.
[16] Negro, A., Cherbuin, T., & Lutolf, M. P. (2018). 3D inkjet printing of complex, cell-laden hydrogel structures. Scientific Reports, 8(1), 1-9.
[17] Skylar-Scott, M. A., Gunasekaran, S., & Lewis, J. A. (2016). Laser-assisted direct ink writing of planar and 3D metal architectures. PNAS, 113(22), 6137-6142.
[18] Barry III, R. A., Shepherd, R. F., Hanson, J. N., Nuzzo, R. G., Wiltzius, P., & Lewis, J. A. (2009). Direct‐write assembly of 3D hydrogel scaffolds for guided cell growth. Advanced Materials, 21(23), 2407-2410.
[19] Hon, K. K. B., Li, L., & Hutchings, I. M. (2008). Direct writing technology—Advances and developments. CIRP Annals, 57(2), 601-620.
[20] O’Connell, C. D., Konate, S., Onofrillo, C., Kapsa, R., Baker, C., Duchi, S., Eekel, T., Yue, Z., Beirne, S., Barnsley, G., Bella, C. D., Choong, P. F., & Wallace, G. G. (2020). Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photocrosslinking during extrusion. Bioprinting, 19(3), 1-12.
[21] Duchi, S., Onofrillo, C., O’Connell, C. D., Blanchard, R., Augustine, C., Quigley , A. F., Kapsa, R. M. I., Pivonka, P., Wallace, G., Bella, C. D., & Choong, P. F. M. (2017). Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Scientific Reports, 7(1), 5837.
[22] Zhu, J., Zhang, Q., Yang, T., Liu, Y., & Liu, R. (2020). 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nature Communications, 11(1), 3462.
[23] Li, Z., Chen, H., Wang, C., Chen, L., Liu, J., & Liu, R. (2018). Efficient photopolymerization of thick pigmented systems using upconversion nanoparticles-assisted photochemistry. Polymer Chemistry, 56(9), 994-1002.
[24] Wang, Z., Jin, X., Tian, Z., Menard, F., Holzman, J. F., & Kim, K. (2018). A novel, well-resolved direct laser bioprinting system for rapid cell encapsulation and microwell fabrication. Advanced Healthcare Mater, 7(9), 1-11.
[25] Mandrycky, C., Wang, Z., Kim, K., & Kim, D. H. (2016). 3D bioprinting for engineering complex tissues. Biotechnology Advances, 34(4), 422-434.
[26] Gao, G., Yonezawa, T., Hubbell, K., Dai, G., & Cui, X. (2015). Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnology Journal, 10(10), 1568-1577.
[27] Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Rémy, M., Bordenave, L., Amédée, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250-7256.
[28] Catros, S, Fricain, J. C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amédée, J., & Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3(2), 025001.
[29] Liu, W., Zhang, Y. S., Heinrich, M. A., Ferrari, F. D., Jang, H. L., Bakht, S. M., Alvarez, M. M., Yang, J., Li, Y. C., Santiago, G. T., Miri, A. K., Zhu, K., Khoshakhlagh, P., Prakash, G., Cheng, H., Guan, X. F., Zhong, Z., Ju, J., Zhu, G. H., Jin, X., Shin, S. R., Dokmeci, M. R., & Khademhosseini, A. (2017). Rapid continuous multimaterial extrusion bioprinting. Advanced Materials, 29(3), 1604630.
[30] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[31] Sun, A. X., Lin, H., Beck, A. M., Kilroy, E. J., & TuanProjection, R. S. (2015). Stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front Bioeng Biotechnol, 3, 115.
[32] Warner, J., Soman, P., Zhu, W., Tom, M., & Chen, S. (2016). Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomaterials Science and Engineering, 2(10), 1763-1770.
[33] Huang, X., Zhang, Y., Shi, M., Zhang, L. P., Zhang, Y., & Zhao, Y. (2021). A highly biocompatible bio-ink for 3D hydrogel scaffolds fabrication in the presence of living cells by two-photon polymerization. European Polymer Journal, 153(2021), 110505.
[34] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩 (2018)。3D列印:積層製造技術與應用。新北市:全華圖書。
[35] Du, Y., Guo, J. L., Wang, J., Mikos, A. G., & Zhang, S. (2019). Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials, 218(119334).
[36] Li, B., Moriarty, T. F., Webster, T., & Xing, M. (2020). Racing for the surface: Antimicrobial and Interface Tissue Engineering. New York, America: Springer, Cham.
[37] Pan, E. Y., Pu, N. W., Tong, Y. P., & Yau, H. F. (2005). Application of two-photon-absorption photopolymerization to micro-device fabrication. Journal of C.C.I.T., 34(1), 57-74.
[38] Boyd, R. W. (1992). Nonlinear Optics. San Diego: Academic press.
[39] 沈芳茹 (2020)。基於光感三維生物列印之路徑導引式噴頭開發,國立中央大學,碩士論文。
[40] Knowlton, S., Yenilmez, B., Anand, S., & Tasoglu, S. (2017). Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5, 10-18.
[41] D O’Connell, C., Di Bella, C., Thompson, F., Augustine, C., Beirne, S., Cornock, R., Richards, C, J., Chung, J., Gambhir, S., Yue, Z., Bourke, J., Zhang, B., Taylor, A., Quigley, A., Kapsa, R., Choong, P., & Wallace, G. G. (2016). Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 8(1), 015019.
[42] Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., Van Blitterswijk, C. A., Schacht, E., Alblas, J., & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689-1696.
[43] Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., Scott, D. W., Fischer, J. P., & Mikos, A. G. (2016). Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design. ACS Biomaterials Science & Engineering, 2(10), 1771-1780.
[44] Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6(2), 024105.
[45] Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M. R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Advanced Materials, 28(4), 677-684.
[46] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[47] Zheng, L., Kurselis, K., El-Tamer, A., Hinze, U., Reinhardt, C., Overmeyer, L., & Chichkov, B. (2019). Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerization. Nanoscale Research Letters, 14(1), 134.
[48] Kim, J. D., & Lee, Y. G. (2016). Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization. Journal of Micromechanics and Microengineering, 26(7), 075012.
[49] Hafez, M., Sidler, T., & Salathe, R. P. (2003). Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner. Optical Engineering, 42(4), 1048-1057.
[50] Ha, C. W., Prabhakaran, P., & Son, Y. (2019). 3D-printed polymer/metal hybrid microstructures with ultraprecision for 3D microcoils. 3D Printing and Additive Manufacturing, 6(3), 165.
[51] Rekštytė, S., Žukauskas, A., Purlys, V., Gordienko, Y., & Malinauskas, M. (2013). Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Applied Surface Science, 270, 382-387.
[52] Zhou, X., Hou, Y., & Lin, J. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3), 030701.
[53] 洪承暉 (2018)。使用微型閥並具備自動平台校正功能之三維生物列印機開發,國立中央大學,碩士論文。
[54] Park, S. H., Yang, D. Y., & Lee, K. S. (2009). Two-photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices. Laser & Photonics Reviews, 3(1-2), 1-11.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2022-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明