博碩士論文 109353001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.224.31.218
姓名 林子玄(Lin,Tze-shuan)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 低軌道衛星地面站(LEO Terminal) 散熱機構設計分析
(Design and Analysis of Heat Dissipation Structure of Low Earth Orbit(LEO) Terminal)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-30以後開放)
摘要(中) 低軌道衛星地面站(LEO Terminal)用於收發位於地球低軌道處衛星之訊號,由於傳輸距離遠、地面站架設方式、天線與積體電路(IC)因高頻段使尺寸縮小等因素,導致地面站面臨高溫問題,進而影響其運作。
  本研究使用自然對流方式設計散熱機構,透過3D設計軟體繪製散熱機構並使用熱模擬程式Flow Simulation進行分析,目的為將地面站外殼與IC溫度分別降至60°C與85°C以下,整體重量需控制在15kg內,規劃4種類型之地面站進行分析,以獲得地面站散熱機構之最佳設計,分別為TypeA:IC間距差異、TypeB:鋁散熱鰭片散熱結果、TypeC:鋁散熱鰭片延伸散熱結果與TypeD:銅鋁複合散熱鰭片。
  本研究分析結果得知,天線與IC間距設計走向高密度化時,將產生更高溫之問題;散熱鰭片在不超出地面站尺寸之情況下,IC最高溫度可控制在85°C以內,透過銅鋁複合散熱鰭片可以將溫度再降低,熱擴散更加均勻,利於散熱,但重量會提高,加工方式亦會較複雜,設計者可以針對溫度、重量需求來考量是否要使用銅鋁複合散熱鰭片;散熱鰭片超出地面站尺寸之情況下,獲得所有類型中最低IC溫度,研究結果為設計者提供不同設計需求做為參考,使地面站達到最佳運行溫度。
摘要(英) The Low Earth Orbit Terminal(LEO Terminal) is used to transmitting and receiving signals from low earth orbits satellites.Since the long distance of transmission links, Terminal mount, antenna and integrated circuit (IC) whose size will shrink due to the employed high frequency, causes Terminal increase the operating temperature, affect the performance.
  This research uses natural convection to design the heat dissipation structure, draws the heat dissipation structure through 3D design software, and uses thermal simulation program Flow Simulation for analysis. The purpose is to reduce the temperature of the Terminal case and IC below 60°C and 85°C, respectively, The overall weight should be controlled within 15kg, 4 types of Terminal were analysis to obtain the best design of the Terminal heat dissipation structure, namely TypeA: IC spacing difference, TypeB: heat dissipation result of aluminum heat sink, TypeC: heat dissipation result of aluminum heat sink elongation, TypeD: copper clad aluminum heatsink.
  The research results of this paper show that when the distance of the antenna and the IC is designed to be high density, there will be a problem of higher operating temperature.The heat sink structure does not exceeds the Terminal size, the maximum temperature of the IC will be controlled within 85°C. By copper clad aluminum heatsink, the temperature can be further reduced, and the heat spread is more uniform, which is conducive to heat transfer, but the weight will increase and the processing method will be more complicated. Designers can consider whether to copper clad aluminum heatsink according to temperature and weight requirements. when the heat sink structure exceeds the Terminal size, the lowest IC temperature of all types can be obtained. The research results provide designers with different design requirements as a reference to make The Terminal reaches optimum operating temperature.
關鍵字(中) ★ 低軌道衛星地面站
★ 散熱機構
★ 自然對流
★ 設計分析
關鍵字(英) ★ Low Earth Orbit Terminal
★ Natural Convection
★ Heat Dissipation Structure
★ Design and Analysis
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
名詞解釋 xiii
第一章 、緒論 1
1-1 前言 1
1-2 研究動機與目的 1
第二章 、文獻回顧 3
2-1 行動通訊技術介紹 3
2-1-1 行動通訊技術回顧 3
2-1-2 星鏈計畫介紹 4
2-1-3 低軌道衛星地面站介紹 6
2-2 Solidworks 與Flow Simulation模擬軟體介紹 10
2-3 散熱機構介紹 11
2-3-1 鋁散熱鰭片 12
2-3-2 銅鋁複合散熱鰭片 12
第三章 、低軌道衛星地面站模型設計與分析參數設定 14
3-1 研究方法 14
3-2 佐證模型 14
3-3 低軌道衛星地面站設計目標 16
3-3-1 IC溫度目標 17
3-3-2 外殼溫度目標 17
3-3-3 整體地面站尺寸與重量目標 17
3-4 模型設計、分析條件參數設定 17
3-4-1 模型設計 17
1. IC尺寸設計 20
2. PCB與蓋板尺寸設計 22
3. 鋁散熱鰭片設計 23
4. 銅鋁複合散熱鰭片 26
3-4-2 前處理 27
1. 建立分析專案 28
2. 建立計算空間 32
3. 定義分析條件 33
4. 設定欲知結果 35
5. 建立網格模型 36
3-4-3 求解 38
3-4-4 後處理 39
第四章 、低軌道衛星地面站模擬分析結果與討論 41
4-1 TypeA IC間距修改結果 41
4-2 TypeB 鋁散熱鰭片修改結果 43
4-2-1 最佳底板厚度 43
4-2-2 最佳鰭片厚度 49
4-2-3 最佳鰭片間距 52
4-2-4 最佳鰭片高度 55
4-3 TypeC 鋁散熱鰭片延伸修改結果 61
4-4 TypeD 銅鋁複合散熱鰭片修改結果 64
4-5 TypeB與TypeD之最佳值結果比較 70
第五章 、結論 72
參考文獻 73
參考文獻 [1] X. Lin, S. Cioni, G. Charbit, N. Chuberre, S. Hellsten, J. F. Boutillon. “On the Path to 6G: Embracing the Next Wave of Low Earth Orbit Satellite Access”, IEEE Communications Magazine, Volume, 59, Number 12, December 2021,
pp. 36-42
[2] IMT-2030 (6G) Promotion Group, White Paper on 6G Vision and Candidate Technologies, June 2021
[3] Ntt Docomo, Inc, White Paper 5G Evolution and 6G, January 2020
[4] P. Prudhomme.” Ka-Band SATCOM Trends and Power Amplification Challenges”, A Comprehensive Guide to mmWave Solutions, May 2020
[5] A. Jasim, F. Sabah, M. R. Mohammed.” Title: Satellite communication channel”, Master’s Thesis, Linnaeus University, June 2012
[6] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar and A. Davis. “Cyber security in New Space Analysis of threats, key enabling technologies and challenges”, International Journal of Information Security, Volume 20, Number 3 , May 2020, pp.287-311
[7] Starlink. ”Starlink accessories”,by https://www.starlink.com/kit
[8] Oneweb.“Oneweb announces LEO flat-panel device for terrestrial broadband service”, August 2021 ,by https://www.intelliantech.com/news/newsroom/oneweb-announces-leo-flat-panel-device-for-terrestrial-broadband-service/#
[9] W. Honcharenko. “Sub-6 GHz mMIMO Base Stations Meet 5G’s Size and Weight Challenges” Microwave Journal, Volume 62, Number 2, February 2019, pp.40-52
[10] Z. Wang ,S. Hu , L Gu, L Lin. “Review of Ka-Band Power Amplifier” Electronics, Volume 11, Number 6:942, March 2022
[11] 邱韋壬:〈先進60GHz前端相位陣列發射模組之散熱效能評估與設計〉,碩士論文,國立清華大學,民國101年7月。
[12] Lotus Arise. ” Satellite Frequency Bands: L, S, C, X, Ku, Ka-band – UPSC”, December 2020, by https://lotusarise.com/satellite-frequency-bands-upsc/
[13] F. Moukalled, L. Mangani, M. Darwish. “The Finite Volume Method in Computational Fluid Dynamics”, Cham:Springer International Publishing ,2016
[14] B. Andersson, R. Andersson, L. Hakansson, M. Mortensen, R. Sudiyo, B. V. Wachem. “Computational Fluid Dynamics for Engineers”, Cambridge:Cambridge University Press, 2012
[15] I. B. Ramlan, N. B. Darlis, “Comparison between Solidworks and Ansys Flow Simulation on Aerodynamic Studies” Journal of Industry, Engineering and Innovation, Volume 2, Number 1, July 2019, pp.1-9
[16] W. M. Rohsenow, J. R. Hartnett, Y. I. Cho, “Handbook Of Heat Transfer”, Third Edition, New York:McGraw-Hill, 1998
[17] B. S. Seo, K. J. Lee, J. K. Yang, Y. S. Cho, D. H. Park. “Development and Characterization of Optimum Heat Sink for 30 W Chip on Board LED Down Light” The Korean Institute of Electrical and Electronic Material Engineers, Volume 13, Number 6, December 2012, pp.292-296
[18] T. Qing, L. Xiu, W. Qingsong. “Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing” Journal of Wuhan University of Technology Mater. Sci. Ed., Volume 35, April 2020, pp.183-191
[19] Anokiwave, Inc. “Whitepaper:Flat Panel Phased Array Antennas: Enabling Scalable & Affordable SATCOM Solutions”, 2020
[20] Solidworks Flow Simulation Engineering Database
[21] Y. Aslan, C. E. Kiper, A. J. Biggelaar, U. Johannsen, A. Yarovoy. “Passive Cooling of mm-Wave Active Integrated 5G Base Station Antennas Using CPU Heatsinks” 2019 16th European Radar Conference (EuRAD), October 2019, pp.121-124.
[22] B. Li, S. Jeon, C. Byon. “Investigation of Natural Convection Heat Transfer Around a Radial Heat Sink With a Perforated Ring” International Journal of Heat and Mass Transfer, Volume 97, 2016, pp.705-711
[23] X. Meng, J. Zhu, X. Wei, Y. Yan. “Natural Convection Heat Transfer of a Straight-fin Heat Sink” International Journal of Heat and Mass Transfer, Volume 123, 2018, pp.561-568
指導教授 李雄 審核日期 2022-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明