博碩士論文 108326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.220.188.4
姓名 王公辰(KUNG-CHEN WANG)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 活性污泥異營與自營脫硝 反應動力特性之研究
(An investigation on the kinetic characteristics of activated sludge conducting heterotrophic and autotrophic denitrification)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 沼渣施用對土壤及滲出水之重金屬成份影響分析★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討
★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究
★ 污泥脫水濾液無機物成分之結垢潛勢研究★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響
★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究★ 超音波水解生物污泥機制探討
★ 生物除氮程序(MLE Process)效能評估及污泥活性探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別以實廠污泥進行批次式異營脫硝實驗,以及利用馴養後污泥進行批次式自營脫硝實驗,並分別評估其脫硝特性以及對其脫硝過程進行動力描述。
研究結果顯示加入醋酸鹽作為額外碳源進行脫硝時,其脫硝速率約為以甲醇及糖蜜作為碳源的2~3倍。利用醋酸鹽及糖蜜作為額外碳源脫硝時,在脫硝過程中會有脫硝中間產物亞硝酸鹽氮累積,且同時觀察到氨氮濃度下降之情況。當COD負荷提高時,糖蜜作為碳源產生的亞硝酸鹽氮濃度會隨之提升。使用醋酸鹽作為碳源添加能在8小時達到98%的額外添加COD去除率,甲醇及糖蜜則約為40%,有明顯COD殘留現象。
甲醇及C/N比為3、4的醋酸鹽脫硝動力以0階及1階函數擬合時經統計變異數分析沒有顯著差異,糖蜜脫硝動力統計上則呈現1階函數,而醋酸鹽在C/N比為5、6時為0階函數。推測脫硝過程中糖蜜因碳源生物代謝特性之限制條件下,脫硝動力呈現1階特性,而醋酸鹽碳源C/N比為5、6,在碳源特性及濃度未受限制的情況下則能呈現0階脫硝動力特性。
自營脫硝生物依本研究馴養條件操作後約1個月能使微生物在12小時內去除100 mg/L的硝酸鹽氮,達到馴養之目標。自營性脫硝實驗中,在硝酸鹽氮添加低於100 mg/L的條件下,能在8小時內完全去除硝酸鹽氮,但各組別皆產生高濃度亞硝酸鹽氮累積。脫硝過程中發現硫代硫酸鹽在日光較多的環境下被氧化的比例較高。
自營性脫硝過程中硝酸鹽氮濃度變化為1階反應,而硫代硫酸鹽氧化情況較接近0.5階反應,推測在自營性脫硝過程中,脫硝動力受電子供體代謝特性及過高濃度的亞硝酸鹽影響,而使脫硝動力呈現此特性。
摘要(英) This research conducts the batch heterotrophic denitrification experiments of active sludge from science industrial park, and the batch autotrophic denitrification experiments by acclimated sludge. The denitrification characteristics and the kinetic description of the denitrification process are also evaluate.
The research results show that when using acetate as an additional carbon source for denitration, the denitration rate is about 2 to 3 times that of methanol and molasses as the carbon source. When using acetate and molasses as additional carbon sources for denitrification, nitrite, which is an intermediate product of denitrification, will accumulate during the denitrification process, at the same time, it is observe that the concentration of ammonia nitrogen decreases. Moreover, if used molasses as an additional carbon source, when the COD loading increases, nitrite concentration will increase at the same time. Using acetate as an additional carbon source have 90% of the external carbon source removal ratio in 8 hours, while methanol and molasses are only 40%, there have COD residual in the effluent obviously.
The denitration kinetic of using methanol and C/N ratio 3 and 4 of acetate as an additional carbon source have no significant difference between the fitting of 0-order and 1-order function in analysis of variance. Using molasses as an additional carbon source is fit to 1-order function. While using C/N ratio is 5 or 6 of acetate as an additional carbon source is fit to 0-order function. It is speculate the denitrification kinetics of molasses is the restriction by the biological metabolic characteristics of carbon sources, that it presents 1-order denitrification kinetics. While using C/N ratio is 5 or 6 of acetate as an additional carbon source, the carbon source metabolic characteristics and concentration are not the restriction, that it present the 0-order denitration kinetics.
The autotrophic denitrification organisms can remove 100 mg/L of nitrate nitrogen within 12 hours after operating under the acclimated conditions in this study for about one month. In autotrophic denitrification experiments, when nitrate is added less than 100 mg/L, it can be completely remove within 8 hours. However, each experiments batch produces high concentration nitrite. During the autotrophic denitrification, data shows that the oxidation quantity of thiosulfate is more than the production of sulfate when the daytime.
Nitrate concentration change in the autotrophic denitrification is fit to 1-order function, while thiosulfate concentration change is fit to the 0.5-order reaction. It is speculate that in the autotrophic denitrification process, the denitrification kinetic order is affected by the metabolic characteristics of thiosulfate and the excessively high concentration of nitrite.
關鍵字(中) ★ 異營性脫硝
★ 自營性脫硝
★ 脫硝動力
★ 碳氮比
★ 硫氮比
關鍵字(英) ★ heterotrophic denitrification
★ autotrophic denitrification
★ denitrification kinetic
★ C/N ratio
★ S/N ratio
論文目次 目錄
摘要 i
Abstrate iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 前言 1
1.1研究緣起 1
1.2研究內容與目的 2
第二章 文獻回顧 3
2.1氮循環 3
2.2脫硝作用 4
2.3異營性脫硝作用 8
2.4自營性脫硝作用 14
2.4.1以氫氣進行自營性脫硝 14
2.4.2 以還原性硫化物進行自營性脫硝 16
2.5 異營性、自營性脫硝作用比較 23
2.6 亞硝酸鹽累積現象 26
第三章 研究方法 30
3.1研究架構 30
3.2研究流程與步驟 31
3.2.1 異營性脫硝試驗 31
3.2.2 自營性脫硝污泥馴養 35
3.2.3 硫自營性脫硝試驗 38
3.3實驗材料、設備及分析方法 42
3.3.1實驗設備 42
3.3.2實驗材料 43
3.3.3樣品保存及分析方法 44
第四章 結果與討論 45
4.1異營性脫硝試驗結果 45
4.1.1 pH及ORP變化 45
4.1.2 含氮物質濃度變化情形 54
4.1.3 碳源濃度變化情形 67
4.1.4 脫硝動力評估 74
4.2自營性脫硝污泥馴養結果 79
4.3硫自營性脫硝試驗結果 92
4.3.1 pH及ORP變化 92
4.3.2 含氮物質濃度變化情形 95
4.3.3 硫代硫酸鹽、硫酸鹽濃度變化情形 97
4.3.4 脫硝動力評估 99
4.4異營性與硫自營性脫硝試驗比較 103
4.4.1 脫硝試驗參數比較 103
4.4.2 脫硝速率比較 106
第五章 結論與建議 109
5.1結論 109
5.2建議 111
參考文獻 112
附錄 118
參考文獻 Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J.-C. and Erable, B. 2019. Influence of Hydrogen Electron Donor, Alkaline pH, and High Nitrate Concentrations on Microbial Denitrification: A Review. Int J Mol Sci 20(20), 5163.
Baumann, B., Snozzi, M., Van Der Meer, J.R. and Zehnder, A.J.B. 1997. Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Research 31(8), 1947-1954.
Campos, J.L., Carvalho, S., Portela, R., Mosquera-Corral, A. and Méndez, R. 2008. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology 99(5), 1293-1299.
Campos, J.L., Dumais, J., Pavissich, J.P., Franchi, O., Crutchik, D., Belmonte, M., Faundez, M., Jorquera, L., Pedrouso, A., Mosquera-Corral, A. and Val Del Rio, A. 2019. Predicting Accumulation of Intermediate Compounds in Nitrification and Autotrophic Denitrification Processes: A Chemical Approach. Biomed Res Int 2019, 2051986.
Cardoso, R.B., Sierra-Alvarez, R., Rowlette, P., Flores, E.R., Gomez, J. and Field, J.A. 2006. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6), 1148-1157.
Carniello, V., Peterson, B.W., van der Mei, H.C. and Busscher, H.J. 2018. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci 261, 1-14.
Carucci, A., Ramadori, R., Rossetti, S. and Tomei, M.C. 1996. Kinetics of denitrification reactions in single sludge systems. Water Research 30(1), 51-56.
Çeçen, F. and Gönenç, I.E. 1995. Criteria for Nitrification and Denitrification of High-Strength Wastes in Two Upflow Submerged Filters. Water Environment Research 67(2), 132-142.
Chang, C.-N., Cheng, H.-B. and Chao, A.C. 2004. Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes. Environmental Science & Technology 38(6), 1807-1812.
Charpentier, J., Florentz, M. and David, G. 1987. Oxidation-Reduction Potential (ORP) Regulation: A Way to Optimize Pollution Removal and Energy Savings in the Low Load Activated Sludge Process. Water Science and Technology 19(3-4), 645-655.
Chen, R., Deng, M., He, X.G. and Hou, J. 2017. Enhancing Nitrate Removal from Freshwater Pond by Regulating Carbon/Nitrogen Ratio. Front. Microbiol. 8, 9.
Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I. and Gu, A.Z. 2009. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ Res 81(8), 788-799.
Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K. and Bae, W. 2014. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research 58, 169-178.
Clarke, M.A. (2003) Encyclopedia of Food Sciences and Nutrition (Second Edition). Caballero, B. (ed), pp. 5711-5717, Academic Press, Oxford.
Claus, G. and Kutzner, H.J. 1985. Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Applied Microbiology and Biotechnology 22(4), 283-288.
Cui, Y.-X., Biswal, B.K., Guo, G., Deng, Y.-F., Huang, H., Chen, G.-H. and Wu, D. 2019a. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied Microbiology and Biotechnology 103(15), 6023-6039.
Cui, Y.X., Guo, G., Ekama, G.A., Deng, Y.F., Chui, H.K., Chen, G.H. and Wu, D. 2019b. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Water Research 162, 246-257.
Di Capua, F., Pirozzi, F., Lens, P.N.L. and Esposito, G. 2019. Electron donors for autotrophic denitrification. Chemical Engineering Journal 362, 922-937.
Drtil, M., Németh, P., Buday, J., Bodík, I. and Hutnan, M. 1999. Regulation of Denitrification Using Continually Measured ORP and pH Signal. Chemical Papers 53.
Drysdale, G., Kasan, H. and Bux, F. 1999. Denitrification by heterotrophic bacteria during activated sludge treatment. WATER SA-PRETORIA- 25, 357-362.
EPA, U. 1975 Process design manual for nitrogen control.
Fan, C., Zhou, W., He, S. and Huang, J. 2021. Sulfur transformation in sulfur autotrophic denitrification using thiosulfate as electron donor. Environ Pollut 268(Pt B), 115708.
Findlay, A., Bennett, A., Hanson, T. and Luther, G. 2015. Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria. Applied and environmental microbiology 81.
Frigaard, N.U. and Dahl, C. 2009. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54, 103-200.
Güven, D. 2009. Effects of Different Carbon Sources on Denitrification Efficiency Associated with Culture Adaptation and C/N Ratio. CLEAN - Soil, Air, Water 37(7), 565-573.
Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X. and Zhu, Y. 2012. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO(3)-N. Bioresour Technol 114, 137-143.
Hamlin, H.J., Michaels, J.T., Beaulaton, C.M., Graham, W.F., Dutt, W., Steinbach, P., Losordo, T.M., Schrader, K.K. and Main, K.L. 2008. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacultural Engineering 38(2), 79-92.
Hanson, T., Luther, G., Findlay, A., MacDonald, D. and Hess, D. 2013. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis. Front. Microbiol. 4(382).
Hao, W., Zhang, J., Duan, R., Liang, P., Li, M., Qi, X., Li, Q., Liu, P. and Huang, X. 2020. Organic carbon coupling with sulfur reducer boosts sulfur based denitrification by Thiobacillus denitrificans. Sci Total Environ 748, 142445.
Hu, B.L., Zheng, P., Tang, C.J., Chen, J.W., van der Biezen, E., Zhang, L., Ni, B.J., Jetten, M.S., Yan, J., Yu, H.Q. and Kartal, B. 2010. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44(17), 5014-5020.
Huang, S., Zheng, Z., Wei, Q., Han, I. and Jaffé, P.R. 2019. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions. Bioresource Technology 294, 122176.
Huilinir, C., Acosta, L., Yanez, D., Montalvo, S., Esposito, G., Retamales, G., Levican, G. and Guerrero, L. 2020. Elemental sulfur-based autotrophic denitrification in stoichiometric S(0)/N ratio: Calibration and validation of a kinetic model. Bioresour Technol 307, 123229.
Körner, H. and Zumft, W.G. 1989. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Applied and Environmental Microbiology 55(7), 1670-1676.
Kim, J.H., Chen, M., Kishida, N. and Sudo, R. 2004. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res 38(14-15), 3340-3348.
Koenig, A. and Liu, L. 2004. Autotrophic denitrification of high-salinity wastewater using elemental sulfur: batch tests. Water Environ Res 76(1), 37-46.
Koenig, A. and Liu, L.H. 2001. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35(8), 1969-1978.
Kostrytsia, A., Papirio, S., Frunzo, L., Mattei, M.R., Porca, E., Collins, G., Lens, P.N.L. and Esposito, G. 2018a. Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions. J. Environ. Manage. 211, 313-322.
Kostrytsia, A., Papirio, S., Mattei, M.R., Frunzo, L., Lens, P.N.L. and Esposito, G. 2018b. Sensitivity analysis for an elemental sulfur-based two-step denitrification model. Water Science and Technology 78(6), 1296-1303.
Kouanda, A. and Hua, G. 2021. Determination of nitrate removal kinetics model parameters in woodchip bioreactors. Water Research 195, 116974.
Krayzelova, L., Bartacek, J., Kolesarova, N. and Jenicek, P. 2014. Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour Technol 172, 297-302.
Kulikowska, D. and Dudek, K. 2010. Molasses as a carbon source for denitrification. Archives of Environmental Protection 36, 35-45.
Kumar, S., Herrmann, M., Blohm, A., Hilke, I., Frosch, T., Trumbore, S.E. and Kusel, K. 2018. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol 94(10).
Li, Y., Wang, Y., Wan, D., Li, B., Zhang, P. and Wang, H. 2020. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour Technol 300, 122682.
Lide, D.R. (2004) CRC handbook of chemistry and physics, CRC press.
Liu, C., Li, W., Li, X., Zhao, D., Ma, B., Wang, Y., Liu, F. and Lee, D.J. 2017. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor. Bioresour Technol 243, 1237-1240.
Liu, H., Zhao, F., Mao, B. and Wen, X. 2012. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis. Bioresour Technol 114, 62-68.
Lu, J.s., Lian, T.t. and Su, J.f. 2018. Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system. Research on Chemical Intermediates 44(10), 6011-6022.
Luther, G.W., Ferdelman, T. and Tsamakis, E. 1988. Evidence suggesting anaerobic oxidation of the bisulfide ion in Chesapeake Bay. Estuaries 11(4), 281-285.
Manconi, I., Carucci, A. and Lens, P. 2007. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnol Bioeng 98(3), 551-560.
Martienssen, M. and Schöps, R. 1999. Population dynamics of denitrifying bacteria in a model biocommunity. Water Research 33, 639-646.
Moraes, B.S., Souza, T.S. and Foresti, E. 2011. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells. Water Sci Technol 64(3), 731-738.
Moraes, B.S., Souza, T.S.O. and Foresti, E. 2012. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry 47(9), 1395-1401.
Oberoi, A.S., Huang, H., Khanal, S.K., Sun, L. and Lu, H. 2021. Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes. Chemical Engineering Journal 404, 126486.
Oh, J. and Silverstein, J. 1999. Oxygen inhibition of activated sludge denitrification. Water Research 33(8), 1925-1937.
Oh, S.-E., Kim, K.-S., Choi, H., Cho, J. and Kim, I. 2000. Kinetics and physiological characteristics of autotrophic denitrifying sulphur bacteria. Water Science and Technology 42, 959-968.
Pfennig, N. 1975. The phototrophic bacteria and their role in the sulfur cycle. Plant and Soil 43(1), 1-16.
Philips, S., Laanbroek, H.J. and Verstraete, W. 2002. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology 1(2), 115-141.
Quan, Z.X., Jin, Y.S., Yin, C.R., Lee, J.J. and Lee, S.T. 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresour Technol 96(15), 1690-1695.
Rahimi, S., Modin, O. and Mijakovic, I. 2020. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 43, 107570.
Rittmann, B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Principles and Applications, McGraw-Hill Education, New York.
Sage, M., Daufin, G. and Gésan-Guiziou, G. 2006. Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Research 40(14), 2747-2755.
Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S. and Cinar, O. 2011. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production. Water Research 45(20), 6661-6667.
Sahinkaya, E., Kilic, A. and Duygulu, B. 2014. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Res 60, 210-217.
Saleh-Lakha, S., Shannon, K.E., Henderson, S.L., Goyer, C., Trevors, J.T., Zebarth, B.J. and Burton, D.L. 2009. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl Environ Microbiol 75(12), 3903-3911.
Seitzinger, S., Harrison, J.A., Böhlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C. and Drecht, G.V. 2006. DENITRIFICATION ACROSS LANDSCAPES AND WATERSCAPES: A SYNTHESIS. Ecological Applications 16(6), 2064-2090.
Shah, D.B. and Coulman, G.A. 1978. Kinetics of nitrification and denitrification reactions. Biotechnology and Bioengineering 20(1), 43-72.
Shao, M.-F., Zhang, T., Fang, H.H.-P. and Li, X. 2011. The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere 83(1), 1-6.
Shao, M.F., Zhang, T. and Fang, H.H. 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88(5), 1027-1042.
Shen, J., He, R., Han, W., Sun, X., Li, J. and Wang, L. 2009. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). J Hazard Mater 172(2-3), 595-600.
Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E. and Field, J.A. 2007. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research 41(6), 1253-1262.
Strohm, T.O., Griffin, B., Zumft, W.G. and Schink, B. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73(5), 1420-1424.
Sun, H., Yang, Q., Peng, Y., Shi, X., Wang, S. and Zhang, S. 2009. Nitrite Accumulation during the Denitrification Process in SBR for the Treatment of Pre-treated Landfill Leachate. Chinese Journal of Chemical Engineering 17(6), 1027-1031.
Tian, T. and Yu, H.Q. 2020. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresour Technol 299, 122686.
van der Star, W.R., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C. and van Loosdrecht, M.C. 2007. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41(18), 4149-4163.
Vishniac, W. and Santer, M. 1957. The thiobacilli. Bacteriol Rev 21(3), 195-213.
Wang, J.-J., Huang, B.-C., Li, J. and Jin, R.-C. 2020a. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters 31.
Wang, T., Guo, J., Lu, C., Li, H., Han, Y., Song, Y., Hou, Y. and Zhang, J. 2020b. Faster removal of nitrite than nitrate in sulfur-based autotrophic denitrification coupled with anammox, affected by the anammox effluent. Environmental Science: Water Research & Technology 6(4), 916-924.
WHO 2003 Ammonia in Drinking-water, WHO.
WHO 2011 Nitrate and nitrite in drinking-water, WHO.
Xu, Z., Dai, X. and Chai, X. 2018. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci Total Environ 634, 195-204.
Yang, Y., Gerrity, S., Collins, G., Chen, T., Li, R., Xie, S. and Zhan, X. 2018. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process Biochemistry 68, 165-170.
Zeng, H. and Zhang, T.C. 2005. Evaluation of kinetic parameters of a sulfur–limestone autotrophic denitrification biofilm process. Water Research 39(20), 4941-4952.
Zhang, X., Wang, X., Feng, W., Li, X. and Lu, H. 2020. Investigating COD and Nitrate-Nitrogen Flow and Distribution Variations in the MUCT Process Using ORP as a Control Parameter. ACS Omega 5(9), 4576-4587.
Zou, G., Papirio, S., Lakaniemi, A.M., Ahoranta, S.H. and Puhakka, J.A. 2016. High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal 284, 1287-1294.
內政部營建署下水道工程處 2017 中華民國 106 年度污水下水道統計要覽.
行政院環境保護署 2019 放流水標準.
歐陽嶠暉 (2016) 下水道學, 台灣水再生協會.
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明