博碩士論文 108326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.136.27.119
姓名 張境元(Ching-Yuan Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 焚化飛灰型無機聚合物應用於吸附含重金屬銅及鉛廢水之可行性研究
(Feasibility of Fly Ash Based Geopolymer for Copper and Lead Adsorption from Aqueous Solutions)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-20以後開放)
摘要(中) 本研究嘗試應用無機聚合物技術,探討都市垃圾焚化飛灰無害化,以及評估焚化飛灰型無機聚合物,作為吸附廢水中重金屬Cu(II)及Pb(II) 之材料可行性。無機聚合物製備實驗係以焚化飛灰與30%及40%偏高嶺土進行摻配,以期調整試驗材料之矽鋁比,同時以8M~12M KOH作為鹼活化劑,並分別控制恆溫恆濕(25℃及相對溼度65%)及快速加熱(60℃)兩種養護方式,期進一步評估無機聚合反應之最佳條件。此外,吸附試驗之實驗規劃,依序針對吸附劑劑量(1.5、5、10及20 g/L),重金屬溶液pH值(2、3、4、5及6),吸附接觸時間(15、30、60、180、360、720及1,440分鐘),以及重金屬初始濃度(100、150、200及250 mg/L)等參數,除評估最佳操作條件外,亦藉由吸附接觸時間及重金屬初始濃度之試驗結果,建立相關吸附之動力參數及重金屬之理論吸附容量。
研究結果顯示,在8M KOH鹼活化及恆溫恆濕養護28天條件下,添加30% 偏高嶺土(Si/Al=1.89)之反應條件,無機聚合物具有較佳的抗壓強度,約可達4.59 ± 0.43 kgf/cm2。根據無機聚合物之FTIR、XRD及SEM等分析結果顯示,試驗材料間具有Si-O-Si與Al-O-Si等官能基之鍵結型態,以及石英與鋁矽化合物等晶相物種,均可驗證無機聚合反應之發生。另根據TCLP之重金屬毒性溶出濃度分析結果可知,焚化飛灰中重金屬鉛之溶出濃度,已由36.20 mg/L降低至0.05 mg/L,已符合法規溶出濃度之管制標準,達到焚化飛灰無害化之目標。為進一步瞭解無機聚合物作為吸附劑之可行性,根據BET分析結果,其比表面積為25.21 m2/g,應屬於中孔型吸附材料。
吸附試驗結果顯示,試驗控制在固液比為5 g/L及重金屬Cu(II)與Pb(II) 溶液之pH值分別為6及5條件下,吸附接觸時間為720分鐘時,重金屬Cu(II)及Pb(II) 之最佳去除效率分別為99.91%及99.93%。當重金屬初始濃度為250 mg/L時,重金屬Cu(II)及Pb(II)之最佳吸附容量,分別為20.90 mg/g及25.96 mg/g。根據吸附動力學結果顯示,擬二階動力學模式可良好模擬吸附試驗結果,並以Freundlich等溫線模式較為符合。根據重金屬物種XRD鑑定及物種模擬之分析結果,證實無機聚合材料之強鹼性,促使重金屬溶液之pH值上升,並形成重金屬Cu(II)及Pb(II)之沉澱物,進而增加重金屬之吸附去除效果。整體而言,根據本研究初步之成果證實,無機聚合物技術可有效達到焚化飛灰無害化之目的,同時亦能有效吸附去除廢水中重金屬Cu(II)及Pb(II)。因此,焚化飛灰型無機聚合物作為吸附材料,除具焚化飛灰資源化再利用之價值外,亦極具有應用於含重金屬廢水處理與發展之潛力。
摘要(英) This research investigated the effect of converting the municipal solid waste incinerator (MSWI) fly ash to the non-hazardous material by geopolymer and the feasibility of fly ash-based geopolymer on the adsorption of copper and lead in the aqueous solution. The geopolymer preparation experiments used 8~12M of KOH as the alkaline activator and designed MSWI fly ash blending with 30% or 40% metakaolin to adjust the suitable Si/Al ratio. The curing conditions, including natural (25℃and 65% of humidity) and accelerated curing (60℃), were also discussed. On the other hand, the adsorption experiments were conducted by controlling the adsorbent dosage (1.5, 5, 10, and 20 g/L), the pH value of the heavy metal solution (2, 3, 4, 5, and 6), the contact time (15, 30, 60, 180, 360, 720, and 1,440 minutes), and the initial concentration of the heavy metal solution (100, 150, 200, and 250 mg/L). The adsorption kinetics and tested metal adsorption capacity were determined by controlling the contact time and the initial concentration of the heavy metal solution.
The experimental results showed that the fly ash-based geopolymer could provide enough compressive strength (4.59 ± 0.43 kgf/cm2) to ensure the geopolymerization in the case of 8M KOH and 30% metakaolin addition (Si/Al ratio=1.89) by the natural curing condition. The presence of Si-O-Si, Al-O-Si, quartz crystal, and aluminosilicate speciation of geopolymer were identified by FTIR, XRD, and SEM. It implied that the geopolymerization had occurred during the preparation process. On the other hand, toxicity characteristics leaching procedure (TCLP) concentrations of the tested metals in the geopolymer were all in compliance with current regulation thresholds. Especially for the lead (Pb) TCLP concentrations, it was decreased from 36.20 mg/L in the original MSWI fly ash to 0.05 mg/L in the geopolymer. The TCLP analysis results indicated that the non-hazardous treatment of MWSI fly ash had been successfully developed by geopolymer. To further understand the feasibility of adsorbent application in geopolymer, the BET analysis results of geopolymer indicated that the specific surface area was approximately 25.21 m2/g and belonged to the mesoporous adsorbent materials.
According to the adsorption test results, in the case of solid-liquid ratio was 5 g/L and the pH values ranging from 5 to 6, the Cu(II) and Pb(II) removal efficiencies were 99.91% and 99.93%, respectively, when the contact time was controlled at 720 minutes. However, when the initial concentration of heavy metals was 250 mg/L, the adsorption capacities of Cu(II) and Pb(II) were 20.90 mg/g and 25.96 mg/g, respectively. The adsorption kinetics results showed that the pseudo-second-order model could fit well in the adsorption test, and the Freundlich isotherm model also matched the tested metals adsorption phenomena. According to the results of metals speciation identified by XRD and simulated by the HSC model, the strong alkali geopolymer could increase the pH value of the heavy metal solution, resulting in the precipitation of tested heavy metals. It will enhance the tested Cu(II) and Pb(II) removal efficiency. In summary, this research confirmed that the MSWI fly ash-based geopolymer was both a non-hazardous material and a promosing adsorbent for effectively removing Cu(II) and Pb(II) from aqueous solutions. Therefore, MSWI fly ash-based geopolymer as the adsorbent materials will be valuable recovered materials and have good potential for practical application in the wastewater containing heavy metals treatment plant.
關鍵字(中) ★ 焚化飛灰
★ 無機聚合物
★ 吸附
★ 重金屬
關鍵字(英) ★ MWSI Fly ash
★ Geopolymer
★ adsorption
★ heavy metal
論文目次 摘要i
Abstractiii
致謝v
目錄vii
圖目錄xi
表目錄xiii
第一章 前言1
第二章 文獻回顧5
2-1 都市焚化飛灰概況5
2-1-1 都市焚化飛灰之物化特性5
2-1-2 都市焚化飛灰之物種鑑定9
2-1-3 都市焚化飛灰之現況及困境10
2-1-4 都市焚化飛灰之處理及應用技術11
2-2 工業廢水之污染21
2-2-1 工業廢水之重金屬污染之處理及應用技術21
2-2-2工業廢水之重金屬吸附之影響因素25
2-3 無機聚合物技術30
2-3-1 無機聚合物技術之反應原理30
2-3-2 無機聚合物技術之特性31
2-3-3 影響無機聚合物作用之因素34
2-4 無機聚合物之應用及發展40
2.4-1無機聚合物之實際應用40
2-4-2 無機聚合物之限制及發展前景49
第三章 實驗材料與方法53
3-1實驗材料53
3-1-1實驗原料53
3-1-2實驗化學藥品54
3-2實驗條件及流程55
3-2-1製備無機聚合物試驗55
3-2-2吸附試驗57
3-2-3試驗之公式及方程式60
3-3實驗分析項目與方法64
3-3-1原料基本特性分析65
3-3-2無機聚合物材料特性分析67
3-3-3無機聚合材料晶相及結構分析68
3-3-4吸附試驗之試驗分析69
第四章 結果與討論71
4-1材料之基本特性分析71
4-1-1基本特性分析71
4-1-2 物種鑑定及微觀結構分析75
4-2無機聚合物之材料特性分析結果78
4-2-1 抗壓強度分析結果79
4-2-2官能基鑑定之分析結果83
4-2-3 晶相物種鑑定之分析結果87
4-2-4微觀結構之分析結果89
4-2-5 BET分析92
4-2-6毒性溶出試驗之分析結果95
4-3 吸附試驗97
4-3-1吸附劑劑量97
4-3-2重金屬溶液pH值99
4-3-3 吸附接觸時間102
4-3-4 重金屬溶液初始濃度105
4-3-5 物種鑑定分析結果107
4-4 吸附模式模擬113
4-4-1吸附動力學113
4-4-2等溫吸附線116
第五章 結論與建議119
5-1結論119
5-2建議121
參考文獻123
參考文獻 Abdel-Ghani, N.T., Elsayed, H.A., AbdelMoied, S., 2018. Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. Hbrc Journal 14, 159-164.
Aiken, T.A., Kwasny, J., Sha, W., Soutsos, M.N., 2018. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research 111, 23-40.
Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., Osibote, O.A., Darmokoesoemo, H., Kusuma, H.S.,2021. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. Journal of Materials Research and Technology 14, 2751-2774.
Alba, N., Vázquez, E., Gasso, S., Baldasano, J., 2001. Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Management 21, 313-323.
Alinnor, I., 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86, 853-857.
Al-Harahsheh, M.S., Al Zboon, K., Al-Makhadmeh, L., Hararah, M., Mahasneh, M., 2015. Fly ash based geopolymer for heavy metal removal: A case study on copper removal. Journal of Environmental Chemical Engineering 3, 1669-1677.
Almutairi, A.L., Tayeh, B.A., Adesina, A., Isleem, H.F., Zeyad, A.M., 2021. Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials 15, 00733. https://doi.org/10.1016/j.cscm.2021.e00733.
Al-Zboon, K., Al-Harahsheh, M.S., Hani, F.B., 2011. Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials 188, 414-421.
Annadurai, G., Ling, L.Y., Lee, J.F., 2008. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials 152, 337-346.
Atanes, E., Cuesta-García, B., Nieto-Márquez, A., Fernández-Martínez, F., 2019. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. Journal of Environmental Management 240, 359-367.
Bature, A., Khorami, M., Ganjian, E., Tyrer, M., 2021. Influence of alkali activator type and proportion on strength performance of calcined clay geopolymer mortar. Construction and Building Materials 267, 120446. https://doi.org/10.1016/j.conbuildmat.2020.120446.
Bayuseno, A., Schmahl, W.W., Müllejans, T., 2009. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. Journal of Hazardous Materials 167, 250-259.
Bie, R.S., Chen, P., Song, X.F., Ji, X.Y., 2016. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. Journal of the Energy Institute 89, 704-712.
Boghetich, G., Liberti, L., Notarnicola, M., Palma, M., Petruzzelli, D., 2005. Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry. Waste Management & Research 23, 57-61.
Cai, J.M., Tan, J.W., Li, X.P., 2020. Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construction and Building Materials 237, 117757. https://doi.org/10.1016/j.conbuildmat.2019.117757.
Chen, L., Wang, Y.S., Wang, L., Zhang, Y.Y., Li, J., Tong, L.Z., Hu, Q., Dai, J.G., Tsang, D.C., 2021. Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. Journal of Hazardous Materials 408, 124404. https://doi.org/10.1016/j.jhazmat.2020.124404.
Cheng, T., Lee, M., Ko, M., Ueng, T., Yang, S., 2012. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science 56, 90-96.
Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management 30, 831-838.
Chindaprasirt, P., Rattanasak, U., 2010. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Management 30, 667-672.
Chithiraputhiran, S.R., 2012. Kinetics of alkaline activation of slag and fly ash-slag systems. Arizona State University.
Clavier, K.A., Liu, Y., Intrakamhaeng, V., Townsend, T.G., 2019. Re-evaluating the TCLP’s role as the regulatory driver in the management of municipal solid waste incinerator ash. Environmental Science and Technology 53, 7964-7973.
Clavier, K.A., Paris, J.M., Ferraro, C.C., Townsend, T.G., 2020. Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production–a review. Resources, Conservation and Recycling 160, 104888. https://doi.org/10.1016/j.resconrec.2020.104888
Cong, P., Cheng, Y., 2021. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition) 8 (3), 283–314.
Dahl, O., Nurmesniemi, H., Pöykiö, R., Watkins, G., 2009. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Processing Technology 90, 871-878.
Darmayanti, L., Kadja, G.T., Notodarmojo, S., Damanhuri, E., Mukti, R.R., 2019. Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: Effect of alkali activation. Journal of Hazardous Materials 377, 305-314.
Darmayanti, L., Notodarmodjo, S., Damanhuri, E., 2017. Removal of Copper (II) Ions in Aqueous Solutions by Sorption onto Fly Ash. Journal of Engineering and Technological Sciences 49, 04007. https://doi.org/10.1051/matecconf/201814704007.
Davidovits J. 1982. The need to create a new technical language for the transfer of basic scientific information. In Transfer and Exploitation of Scientific and Technical Information, EUR 7716, 316-320.
Davidovits, J., 1984. Synthetic mineral polymer compound of the silicoaluminates family and preparation process. United States Patent.
Davidovits, J., 1991. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry 37, 1633-1656.
Davidovits, J., 2008. Geopolymer chemistry and applications. Institut Geopolymer, Geopolymer Institute, Saint-Quentin, France.
De Silva, P., Sagoe-Crenstil, K., Sirivivatnanon, V., 2007. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research 37, 512-518.
Du, B., Li, J.T., Fang, W., Liu, J.U., 2019. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash. Environmental Pollution 250, 68-78.
Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S., 2007. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, 8-20.
Drochytka, R., Černý, V., 2020. Influence of fluidized bed combustion fly ash admixture on hydrothermal synthesis of tobermorite in the mixture with quartz sand, high temperature fly ash and lime. Construction and Building Materials 230.
Environment, U.N., Scrivener, K.L., John, V.M., Gartner, E.M., 2018. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 114, 2-26.
Fan, C.C., Wang, B.M., Ai, H.M., Qi, Y., Liu, Z., 2021. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production 319.
Galiano, Y.L., Pereira, C.F., Vale, J, 2011. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Journal of Hazardous Materials 185, 373-381.
Gan, M., Wong, G.J., Fan, X.H., Ji, Z.Y., Ye, H.D., Zhou, Z., Wang, Z.C., 2021. Enhancing the degradation of dioxins during the process of iron ore sintering co-disposing municipal solid waste incineration fly ash. Journal of Cleaner Production 291.
Gisela, W., Urs, E., Dmitrii A, K., Wolfgang, H., Stefan, S., Waldemar, K., Martin, F., Urs K, M.,2018. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Management 76, 457-471.
Goretta, K., Gutierrez-Mora, F., Singh, D., Routbort, J., Lukey, G., Van Deventer, J., 2007. Erosion of geopolymers made from industrial waste. Journal of Materials Science 42, 3066-3072.
Görhan, G., Kürklü, G., 2014. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering 58, 371-377.
Guo, X.L., Zhang, L.Y., Huang, J.B., Shi, H.S., 2017. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents. Construction and Building Materials 151, 394-404.
Hartmann, S., Koval’, L., Škrobánková, H., Matýsek, D., Winter, F., Purgar, A., 2015. Possibilities of municipal solid waste incinerator fly ash utilisation. Waste Management and Research 33, 740-747.
He, P., Zhang, Y., Zhang, X., Chen, H., 2021. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater. Journal of Cleaner Production 312, 127769. https://doi.org/10.1016/j.jclepro.2021.127769.
Hoc Thang, N., Trung Kien, P., Mohd Mustafa Al Bakri, A., 2017. Lightweight heat resistant geopolymer-based materials synthesized from red mud and rice husk ash using sodium silicate solution as alkaline activator. MATEC Web of Conferences 97, 01119. https://doi.org/10.1051/matecconf/20179701119.
Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34, 451-465.
Hu, Y.Y., Zhang, P.F., Li, J.P., Chen, D.Z., 2015. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. Journal of Hazardous Materials 299, 149-157.
Hu, Y., Yang, F., Chen, F., Feng, Y., Chen, D., Dai, X., 2018. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives. Waste Management 75, 340-351.
Huang, T., Li, D., Kexiang, L., Zhang, Y., 2015. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier. Scientific Reports 5, 1-16.
Hwang, C.L., Huynh, T.P., 2015. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials 101, 1-9.
Javadian, H., Ghorbani, F., Tayebi, H.-a., Asl, S.H., 2015. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry 8, 837-849.
Jin, M., Zheng, Z., Sun, Y., Chen, L., Jin, Z., 2016. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. Journal of Non-Crystalline Solids 450, 116-122.
Jin, Y., Feng, W.P., Zheng, D.P., Dong, Z.J., Cui, H.Z., 2020. Structure refinement of fly ash in connection with its reactivity in geopolymerization. Waste Management 118, 350-359.
Jung, B., Schobert, H.H., 1991. Viscous sintering of coal ashes. 1. Relationships of sinter point and sinter strength to particle size and composition. Energy and Fuels 5, 555-561.
Kara, İ., Yilmazer, D., Akar, S.T., 2017. Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science 139, 54-63.
Kobayashi, Y., Ogata, F., Nakamura, T., Kawasaki, N., 2020. Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal. Journal of Environmental Chemical Engineering 8, 103687. https://doi.org/10.1016/j.jece.2020.103687.
Lahoti, M., Wong, K.K., Tan, K.H., Yang, E., 2018. Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials and Design 154, 8-19.
Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., Leonelli, C., 2010. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management 30, 673-679.
Lau, C.K., Lee, H., Vimonsatit, V., Huen, W.Y., Chindaprasirt, P., 2019. Abrasion resistance behaviour of fly ash based geopolymer using nanoindentation and artificial neural network. Construction and Building Materials 212, 635-644.
Lenormand, T., Rozière, E., Loukili, A., Staquet, S., 2015. Incorporation of treated municipal solid waste incineration electrostatic precipitator fly ash as partial replacement of Portland cement: Effect on early age behaviour and mechanical properties. Construction and Building Materials 96, 256-269.
Li, L., Wang, S., Zhu, Z., 2006. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. Journal of Colloid and Interface Science 300, 52-59.
Liu, H., Lu, H., Chen, D., Wang, H., Xu, H., Zang, R., 2009. Preparation and propertiier of glass-ceramics derived from blast-furnance slag by a ceramic-sintering process. Ceramics Internation, 35(8), 3181-3184.
Liu, Y., Yan, C.J., Zhao, J.J., Zhang, Z.H., Wang, H.Q., Zhou, S., Wu, L.M., 2018. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. Journal of Cleaner Production 202, 11-22.
Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z., Kirchheim, A.P., 2020. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Composites Part B: Engineering 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
Loginova, E., Proskurnin, M., Brouwers, H., 2019. Municipal solid waste incineration (MSWI) fly ash composition analysis: a case study of combined chelatant-based washing treatment efficiency. Journal of Environmental Management 235, 480-488.
Lori, I.S., Toufigh, M.M., Toufigh, V., 2021. Improvement of poorly graded sandy soil by using copper mine tailing dam sediments-based geopolymer and silica fume. Construction and Building Materials 281, 122591. https://doi.org/10.1016/j.conbuildmat.2021.122591.
Ma, Z., Zhang, S., Zhang, H., Cheng, F., 2019. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid–alkali–based alternate method. Journal of Cleaner Production 230, 302-313.
Majdan, M., Pikus, S., Kowalska-Ternes, M., Gładysz-Płaska, A., Staszczuk, P., Fuks, L., Skrzypek, H., 2003. Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite. Journal of Colloid and Interface Science 262, 321-330.
Mandal, S., Calderon, J., Marpu, S.B., Omary, M.A., Shi, S.Q., 2021. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology 243, 103869. https://doi.org/10.1016/j.jconhyd.2021.103869.
Mangialardi, T., 2003. Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials 98, 225-240.
Malandrinos, G., Hadjiliadis, N., 2014. Cu (II)–histones interaction related to toxicity-carcinogenesis. Coordination Chemistry Reviews 262, 55-71.
Maleki, A., Hajizadeh, Z., Sharifi, V., Emdadi, Z., 2019. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. Journal of Cleaner Production 215, 1233-1245.
Messina, F., Ferone, C., Molino, A., Roviello, G., Colangelo, F., Molino, B., Cioffi, R., 2017. Synergistic recycling of calcined clayey sediments and water potabilization sludge as geopolymer precursors: Upscaling from binders to precast paving cement-free bricks. Construction and Building Materials 133, 14-26.
Nath, S., Kumar, S., 2020. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construction and Building Materials 233, 117294. https://doi.org/10.1016/j.conbuildmat.2019.117294
Okada, T., Suzuki, M., 2013. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash. Journal of Environmental Management 130, 347-353.
Ogawa, N., Amano, T., Nagai, Y., Hagiwara, K., Honda, T., Koike, Y., 2021. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash. Waste Management 124, 154-159.
Panhwar, A.H., Kazi, T.G., Afridi, H.I., Arain, S.A., Arain, M.S., Brahaman, K.D., Arain, S.S., 2016. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk. Environmental Geochemistry and Health 38, 265-274.
Panias, D., Giannopoulou, I.P., Perraki, T., 2007. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 301, 246-254.
Peng, Z., Weber, R., Ren, Y., Wang, J.W., Sun, Y.Z., Wang, L.F., 2020. Characterization of PCDD/Fs and heavy metal distribution from municipal solid waste incinerator fly ash sintering process. Waste Management 103, 260-267.
Phoo-ngernkham, T., Sata, V., Hanjitsuwan, S., Ridtirud, C., Hatanaka, S., Chindaprasirt, P., 2015. High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and Building Materials 98, 482-488.
Purkait, M., Gusain, D., DasGupta, S., De, S., 2005. Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics by using different surfactants. Separation Science and Technology 39, 2419-2440.
Prud′Homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Rossignol, S., 2011. In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science 51, 15-22.
Qiu, Q., Jiang, X., Lü, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X., 2019. Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chinese Journal of Chemical Engineering 27, 1708-1715.
Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X., 2018. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology 335, 156-163.
Ren, D., Yan, C., Duan, P., Zhang, Z., Li, L., Yan, Z., 2017. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Construction and Building Materials 134, 56-66.
Rostislav, D., 2020. Influence of fluidized bed combustion fly ash admixture on hydrothermal synthesis of tobermorite in the mixture with quartz sand, high temperature fly ash and lime. Construction and Building Materials 230, 117033. https://doi.org/10.1016/j.conbuildmat.2019.117033.
Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials 24, 1176-1183.
Sahoo, S., Selvaraju, A.K., 2020. Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres. Cement and Concrete Composites 113, 103712. https://doi.org/10.1016/j.cemconcomp.2020.103712.
Saleh, T., Mustaqeem, M., Khaled, M., 2021. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring and Management 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617.
Setoodeh Jahromy, S., Jordan, C., Azam, M., Werner, A., Harasek, M., Winter, F., 2019. Fly ash from municipal solid waste incineration as a potential thermochemical energy storage material. Energy and Fuels 33, 5810-5819.
Shi, H., Ma, H.W., Tian, L.A., Yang, J., Yuan, J.Y., 2020. Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials 258, 120354. https://doi.org/10.1016/j.conbuildmat.2020.120354.
Siyal, A.A., Shamsuddin, M.R., Rabat, N.E., Zulfiqar, M., Man, Z., Low, A., 2019. Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. Journal of Cleaner Production 229, 232-243.
Skrifvars, B.-J., Hupa, M., Backman, R., Hiltunen, M., 1994. Sintering mechanisms of FBC ashes. Fuel 73, 171-176.
Sun, Y.F., Hu, S.G., Zhang, P., Elmaadawy, K.L., Ke, Y., Li, J.H., Li, M.Y., Hu, J.P., Liu, B.C., Yang, J.K., 2020. Microwave enhanced solidification/stabilization of lead slag with fly ash based geopolymer. Journal of Cleaner Production 272, 122957. https://doi.org/10.1016/j.jclepro.2020.122957.
Swanepoel, J.C., Strydom, C.A., 2002. Utilisation of fly ash in a geopolymeric material. Applied Geochemistry 17, 1143-1148.
Tang, J., Su, M., Wu, Q., Wei, L., Wang, N., Xiao, E., Zhang, H., Wei, Y., Liu, Y., Ekberg, C., 2019. Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. Journal of Cleaner Production 234, 139-149.
Tian, Z.P., Zhang, B.R., He, C.J., Tang, R.Z., Zhao, H.P., Li, F.T., 2015. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection 98, 333-341.
Tzanakos, K., Mimilidou, A., Anastasiadou, K., Stratakis, A., Gidarakos, E., 2014. Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management 34, 1823-1828.
Ukhurebor, K.E., Aigbe, U.O., Onyancha, R.B., Nwankwo, W., Osibote, O.A., Paumo, H.K., Ama, O.M., Adetunji, C.O., Siloko, I.U., 2021. Effect of hexavalent chromium on the environment and removal techniques: a review. Journal of Environmental Management 280, 111809. https://doi.org/10.1016/j.jenvman.2020.111809.
Vigdorowitsch, M., Pchelintsev, A., Tsygankova, L., Tanygina, E., 2021. Freundlich Isotherm: An Adsorption Model Complete Framework. Applied Sciences 11, 8078. https://doi.org/10.3390/app11178078.
Wang, H.L., Li, H.H., Yan, F.Y., 2005. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 268, 1-6.
Wang, L., Jin, Y., Nie, Y., Li, R., 2010. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resources, Conservation and Recycling 54, 1428-1435.
Wang, Qunhui, Yang, Jie, Wang, Qi, Wu, Tingji, 2009. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. Journal of Hazardous Materials 162, 812-818.
Wang, X.X, Zhu, K.Y., Zhang, L., Li, A.M, Chen, C.S., Huang, J.X., Zhang, Y.L., 2022. Mechanical property and heavy metal leaching behavior enhancement of municipal solid waste incineration fly ash during the pressure-assisted sintering treatment. Journal of Environmental Management 301, 113856. https://doi.org/10.1016/j.jenvman.2021.113856.
Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94, 99-107.
Wu, Y.H., Pang, H.W., Liu, Y., Wang, X.X, Yu, S.J., Fu, D., Chen, J.R., Wang, X.K., 2019. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environmental Pollution 246, 608-620.
Xiao, R., Ma, Y., Jiang, X., Zhang, M., Zhang, Y., Wang, Y., Huang, B., He, Q., 2020. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. Journal of Cleaner Production. 252, 119610. https://doi.org/10.1016/j.jclepro.2019.119610
Xu, G., Shi, X., 2018. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling 136, 95-109.
Xu, H., Van Deventer, J., 2000. The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing 59, 247-266.
Xu, Z., Zhang, Q.G., Li, X.C., Huang, X.F., 2022. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chemical Engineering Journal 429, 1385-8947.
Xue, X., Liu, Y.L., Dai, J.G., Poon, C.S., Zhang, W.D., Zhang, P., 2018. Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cement and Concrete Composites 94, 43-52.
Yan, Dahai, Peng, Zheng, Yu, Lifeng, Sun, Yangzhao, Yong, Ren, Karstensen, Kåre Helge, 2018. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Management 76, 106-116.
Yan, S., Zhang, F., Wang, L., Rong, Y., He, P., Jia, D., Yang, J., 2019. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters. Journal of Environmental Management 246, 174-183.
Yang, G.C., Chuang, T.N., Huang, C.W., 2017. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking. Waste Management 62, 160-168.
Yu, Z., Song, W., Li, J., Li, Q., 2020. Improved simultaneous adsorption of Cu (II) and Cr (VI) of organic modified metakaolin-based geopolymer. Arabian Journal of Chemistry 13, 4811-4823.
Yuan, J.K., Li, L.Z., He, P.G., Chen, Z.W., Lao, C.S., Jia, D.C., Zhou, Y., 2021. Effects of kinds of alkali-activated ions on geopolymerization process of geopolymer cement pastes. Construction and Building Materials 293, 123536. https://doi.org/10.1016/j.conbuildmat.2021.123536.
Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S., 2008. The role of sulfide in the immobilization of Cr (VI) in fly ash geopolymers. Cement and Concrete Research 38, 681-688.
Zhang, M., Deskins, N.A., Zhang, G., Cygan, R.T., Tao, M., 2018. Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations. The Journal of Physical Chemistry C 122, 6760-6773.
Zheng, L., Wang, W., Shi, Y., 2010. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79, 665-671.
Zeng, S., Wang, J., 2016. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Construction and Building Materials 121, 386-399.
王鯤生,魏玉麟,劉錡樺,黃子光,朱天鈞,泥渣廢棄物處理轉換環境淨化資材之研究--泥渣廢棄物合成高效吸附功能複合材料之開發研究(I),行政院國家科學委員會專題研究計畫,2010。
江康鈺,陳雅馨,周綵蓉,呂承翰,無機聚合材料萃製及成形技術研究,行政院原子能委員會委託研究計劃研究報告,2015。
江康鈺,王啟宗,都市垃圾焚化飛灰與淨水污泥共同燒結產物之動力及材料特性研究,中華民國環境工程學會2008廢棄物處理技術研討會,台北,2008。
李祐承,張祖恩,陳盈良,彭信源,張繼譽,應用焚化飛灰產製高壓蒸氣養護氣泡混凝土,中華民國環境工程學會2014廢棄物處理技術研討會,台中,2014。
李善源,陳盈良,謝尚谷,陳湘涵,王俊瑋,張祖恩,水洗焚化飛灰再利用於輕質混凝土之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
李怡華,應用無機聚合物技術探討都市垃圾焚化飛灰無害化之可行性研究,國立中央大學環境工程研究所,碩士論文,桃園,2018。
林柏翰,郭益銘,周宜成,黃菀婷,吳仲霖,張志平,高鹽飛灰淘洗殘渣作為焚化爐輔助燃料之可行性研究,中華民國環境工程學會2011廢棄物處理技術研討會,台南,2011。
林凱隆,許皓翔,鄭大偉,黃兆龍,TFT-LCD 廢玻璃以不同 SiO2/Na2O 比製備無機聚合物之研究,中華民國環境工程學會2011廢棄物處理技術研討會,台南,2011。
林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,國立臺灣科技大學營建工程系,碩士論文,台北,2012。
林凱隆,羅康維,水洗飛灰與廢棄泥渣類共燒製環保水泥之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
林凱裕,黃菀婷,林子洂,曾思萍,賴淳仁,郭益銘,以回收廢硫酸之概念技術降低焚化飛灰中有害物質之再利用研究,中華民國環境工程學會2014廢棄物處理技術研討會,台中,2014。
林聖淇,李政萱,徐偉展,黃致展,張尊國,陽離子交換樹脂(IR-120)對重金屬的吸附效率與影響因子之探討,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
林以潔,陳志成,江金龍,焚化飛灰鹼熔水熱合成沸石之最佳操作條件研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
林凱隆,羅康維,林雅雯,鄭大偉,回收再利用藍寶石基板碳化矽污泥製備無機聚合物之鹼活化特性研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
林以潔,焚化飛灰鹼熔水熱合成沸石與再利用研究,弘光科技大學環境工程研究所,碩士論文,台中,2016。
邱孔濱,張坤森,蘇薏茹,朱怡儒,陳瑭恩,呂方瑜,MSWI飛灰製成水晶玻璃之循環經濟高值化研究,中華民國環境工程學會2017廢棄物處理技術研討會,台北,2017
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,D類焚化飛灰再利用製成紅磚之研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
邱孔濱,張坤森,黃琦雯,黃子寧,連郁潔,林沛妤, MSWI飛灰無害化與再利用模型廠之精進節水研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
邱孔濱,張坤森,柯昀萱,陳湘涵,丁婧,葉亭里,開發HIFA無害化與穩定化處理技術之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
徐宏德,何汶誠,蔣立中,張益國,施百鴻,鹼活化技術運用於焚化飛灰中重金屬鉛固定化之研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
徐于嵐,陳慶榮,陳冠中,李英杰,以再生長石吸附水中重金屬之探討,中華民國環境工程學會2019廢棄物處理技術研討會,台中,2019。
徐誠隆,張坤森,邱孔濱,許舜傑,余家君,林柏勝,以垃圾焚化飛灰燒製高值化微晶玻璃之研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
莊雅琍,蔗渣灰爐石基無機聚合物之工程性質,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,高雄,2017。
張坤森,徐義復,劉美芬,楊慶翔,廢棄燃煤飛灰製備多孔陶瓷之特性分析及其可行性之研究,中華民國環境工程學會2010環境資訊與規劃管理研討會,高雄,2010。
張坤森,鍾日熙,陳麗萍,黃晨豪,柯韋丞,林衢宏,垃圾焚化廠水洗飛灰再利用製成紅磚之可行性研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
張坤森,邱孔濱,羅文鴻,王琳瑋,林昇彥,徐誠隆,我國垃圾焚化飛灰再利用之困境及去化市場分析研究,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
張格誌,鄭大偉,焚化飛灰資源化及製成無機聚合綠色水泥之研究,中華民國環境工程學會2015廢棄物處理技術研討會,桃園,2015。
張坤森,蘇薏茹,邱孔濱,徐誠隆,楊之葶,利於垃圾焚化飛灰再利用之精進無害化處理研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016。
張坤森,胡智豪,吳宗勳,徐誠隆,楊之葶,洪資喻,無害化MSWI飛灰強化資源化混凝土之可行性研究,中華民國環境工程學會2017廢棄物處理技術研討會,台北,2017。
張坤森,邱孔濱,黃孝綸,黃琦雯,黃清珊,張晴晴,開發有害事業廢棄物焚化飛灰轉化為有價玻璃之研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
張坤森,郭曉恬,陳筱逸,魏意銘,陳欣宜,陳麗萍,水及酸萃取程序去除MSWI飛灰Pb之無害化研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
張坤森、邱孔濱、陳麗萍、潘志明、鍾日熙,垃圾焚化飛灰特性、處理再利用技術、法規與未來展望,環境工程會刊第 23 卷第 2 期,2012。
章裕民,賴俊瑋,林修毅,詹家凱,邱秉澤,楊超太,焚化飛灰資源化處理技術-氯含量與鉛重金屬削減之研究,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
高佳君,應用無機聚合物穩定受重金屬污染底泥之可行性研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
陳信彧,洪保鎮,張木彬,以批次與動態溶出探討飛灰中重金屬及戴奧辛之溶出特性,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
陳志成,林以潔,蔡筑廷,陳昀萱,焚化底渣水熱合成沸石及其吸附特性研究,中華民國環境工程學會2021廢棄物處理技術研討會,台中,2021。
陳建辰,無機聚合物添加紅黏土材料之性能研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2014。
陳善慶,工業廢水之電化學法處理技術開發:有機物及重金屬移除,逢甲大學材料科學與工程學系,博士論文,台中,2017。
陳冠宇,焚化灰渣再利用製成無機聚合物之研究,逢甲大學環境工程與科學學系,碩士論文,台中,2019。
陳麗萍,垃圾焚化飛灰無害化及資材化作為混凝土與紅磚之研究,國立聯合大學環境與安全衛生工程學系碩士班,碩士論文,苗栗,2013。
許育婷,林以潔,陳志成,焚化底渣合成環保吸附材料之效能測試研究,中華民國環境工程學會2020廢棄物處理技術研討會,桃園,2020。
許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,國立宜蘭大學環境工程學系碩士班,碩士論文,宜蘭,2011。
許閎智,無機聚合物添加飛灰材料之開發研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2013。
許育婷,焚化底渣合成環保吸附材料及其應用效能與特性研究,逢甲大學環境工程與科學學系,碩士論文,台中,2021。
黃富昌,陳慶和,以等溫吸/脫附動力曲線探討土壤對有機污染物吸附特性之研究,台灣環境資源永續發展研討會,2005。
黃承鈞,李明國,孫常榮,高思懷,都市垃圾焚化飛灰應用於燒製紅磚資源化之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
黃千紋,利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估,國立中山大學環境工程研究所,碩士論文,高雄,2005。
黃秋松,添加無機聚合物黏土磚材料之開發研究,國立臺北科技大學土木與防災研究所,碩士論文,台北,2012。
黃晨豪,多元技術去除垃圾焚化飛灰氯含量、重金屬及戴奧辛之研究,國立聯合大學環境與安全衛生工程學系碩士班,碩士論文,苗栗,2014。
曾郁雯,楊雅婷,周宜成,林子洂,林宏諭,郭益銘,以焚化飛灰再利用作為熱熔融添加劑處裡電鍍鎳銅污泥之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
詹家凱,李如傑,范文彬,楊超太,劉建中,章裕民,垃圾焚化飛灰燒結骨材之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
趙怡鈞,林凱裕,賴淳仁,郭益銘,以回收廢酸之創新概念技術分離處理再利用焚化飛灰之研究,中華民國環境工程學會2013廢棄物處理技術研討會,高雄,2013。
劉錡樺,朱天鈞,陳虹屹,王鯤生,水處理污泥合成複合吸附劑去除水中污染物之研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010。
劉厚伯,張祖恩,陳盈良,戴育陞,焚化飛灰資源化產製鈣矽水合材料之研究,中華民國環境工程學會2019廢棄物處理技術研討會,台中,2019。
鄭棟元,黃兆龍,劉軍,不同配比混凝土內置鋼筋之腐蝕行為及防蝕策略。防蝕工程 21,223-235,2007。
戴于盛,鄭大偉,柯明賢,無機聚合綠色水泥應用於固化焚化飛灰之研究,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
簡呈至,柯明賢,焚化飛灰穩定化物再利用作為混凝土磚可行性之探討,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2022-5-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明